
Volume 17, Number 2, 2015 © WIETE 2015

Global Journal of Engineering Education

INTRODUCTION

Engineering Dynamics (ED) is a foundational course in many engineering disciplines, such as mechanical, aerospace,
and civil engineering. This course requires students to have strong abstract thinking and visualisation skills to deal with
complex concepts and spatially dependent motions. With the ever-increasing use of computers in education, many ED
instructors have employed computer animation (CA) in teaching and learning. It has been reported that CA improved
student learning outcomes, helped students gain interactive learning experiences, and increased student enjoyment and
motivation to learn [1]. In order to make learning with animation more effective, it is important to provide students
(i.e. users) with control over the animation and the pace of the animated learning content [2]. In CA modules, the
parameters to control animation can be employed as input variables for the problems associated with animation. The
user-controlled animations allow users to manipulate input variables and observe how the output numerical results
change simultaneously and visually with animations.

AUTHORING TOOLS FOR DEVELOPING COMPUTER ANIMATION

As CA modules for engineering courses usually contain a mixture of text, mathematical equations, graphics, animation
and video/audio content, the use of authoring tools in CA development has become more popular. An authoring tool is
defined as any software or collection of software components that help developers write multimedia applications that are
playable by most Web browser plug-ins, e.g. Java applet, Shockwave or Flash players [3]. These plug-ins are software
components that add a new function to a Web browser to view a specific video file format. They are provided virtually
free and are constantly updated in the most popular Web browsers, such as Internet Explorer, Firefox, Chrome and
Safari. It was found that 75% of CA modules or programs made use of the availability of software plug-ins that were
pre-installed (and constantly updated) in most popular Web browsers and provided wide accessibility to students.
Recently, the trend of using free Web browser plug-ins to display CA modules has been increasing. According to a 2011
Millward Brown survey in mature markets, including the USA, Australia, New Zealand and several other countries,
Flash player and Java plug-ins were available in 99% and 73%, of Internet-enabled PCs, respectively [1]. Adobe
projects that the number of addressable devices with Flash technology will be over one billion by the end of 2015 [4].

Adobe Flash Professional is a popular authoring tool for creating vector graphics, animation and game applications in
the form of Shockwave Flash (SWF) files that can be viewed in Flash player and common Web browsers. Animation can

Developing user-controlled animations with Actionscripts 3.0 to enhance
student learning of engineering dynamics

Oai Ha & Ning Fang

Utah State University
Logan, Utah, United States of America

ABSTRACT: Computer animation (CA) is increasingly being employed in engineering education. The user-controlled
animations allow users (students) to manipulate input variables and observe how the output numerical results change
simultaneously and visually with animations. This article describes how ActionScript 3.0 was used to create user-
controlled computer animations to improve student learning of complex concepts and spatially dependent motions in
engineering dynamics, a foundational course in many engineering disciplines, such as mechanical, aerospace and civil
engineering. Three representative computer animations are provided for demonstration purposes, including: a) general
plane motion with a crank and slider mechanism; b) general plane motion and the principle of conservation of energy
with a yoyo; and c) moment of inertia and the principle of conservation with inclined planes. These CA modules were
implemented in a recent semester for students at Utah State University to learn rigid body dynamics. The results of
a questionnaire survey administrated at the end of the semester are reported at the end of this article.

Keywords: User-controlled animations, ActionScript 3.0, engineering dynamics, visualisation

70

be created in a Flash Professional environment by setting up an animation’s contents on the stage and manipulating them
via layers and frames in the Timeline. This method is used by many developers and does not require ActionScript.
ActionScript 3.0 (AS3) is an object-oriented programming language and can be used in a Flash Professional
environment to create Flash application files or class files. AS3 can also be used in a development environment, such as
Flex SDK or Flash Builder. The benefits of using ActionScript to develop CA modules include: a) allowing the
developers to animate more complex motions; and b) animating with ActionScript gives developers certain flexibility in
manipulating variables and provides users with some types of control over animation.

This article describes how ActionScript 3.0 was used to create user-controlled computer animations to improve student
learning of complex concepts and spatially dependent motions in engineering dynamics. For demonstration purposes,
three representative computer animations are provided, including: a) general plane motion with a crank and slider
mechanism; b) general plane motion and the principle of conservation of energy with a yoyo; and c) moment of inertia
and the principle of conservation with inclined planes. It should be noted that a detailed discussion of the instructional
design and learning strategies associated with the use of CA is beyond the scope of this article.

GENERAL PLANE MOTION WITH A CRANK AND SLIDER MECHANISM

In most textbooks, general plane motion is broken into two separate processes and depicted by two static pictures: one
for showing the translation of an object from the initial to the pre-final position, and the other for showing the rotation of
the object from the pre-final to the final position. In reality, however, the translation and rotation take place
simultaneously. Therefore, students are required to integrate the two motions in their minds and sometimes infer the
combined motion of the object at the intermediate positions. These cognitive processes quickly overload a student’s
working memory capacity and reduce the cognitive resources for other learning tasks [5]. The computer animation of
general plane motion gains a big advantage over static pictures by showing explicitly dynamic motions over time and
space. Students are not required to infer and combine both translational and rotational motions in their minds.

Figure 1a shows the animation of a crank and slider mechanism. This mechanism is mainly used to convert rotary
motion to a reciprocating motion, or vice versa. The mechanism consists of two links, OA (segment0) and AB
(segment1) and a sliding block B. Link OA has only rotational motion, sliding block B has only translational motion and
link OA has general plane motion. Link OA’s angular position is labeled θ, and link AB’s angular position is labeled ψ.
The angular velocity of link OA is given as ωOA. Students are asked to find the velocity of block B, called VB, given the
length of the two links, the angular velocity ωOA, and an initial angular position θ of 60°.

 a) b)

Figure 1: a) Components of a crank and slider mechanism; and b) its simplified diagram.

From Figure 1b, the following expressions for ωAB and VB can be derived:

(1)

(2)

(3)

All components of this mechanism were created by using their corresponding classes. A class in object-oriented
programming is a blueprint or template or set of instructions to build a specific type of object [6]. All objects built from
a specific class share the same properties and behaviours. For example, the objects segment0 and segment1 were built
from the class Segment; the object arrow0 and arrow1 were built from the class Arrows; the object block was built from

71

the class Block, and so on. Some of the classes used in this animation were adapted from Peters’ works [7] and their
original source codes can be downloaded from the publisher’s Web site [8]. These .as files are not excutable,
but indispensable during the compilation the main fla file.

On the stage, the authors put a scrollbar (Slider1) and a dynamic text box (thetaText) to display the scrollbar’s current
value (outputValue). This scrollbar is used to control the animation of the segment0 (Figure 1a) starting from the
original angle of 60° to its final position of 90° with respect to the y axis. Then, the authors used the addChild() method
to add components of the mechanism to the display list according to the following chain of order: pivot, segment0,
segment1, block, wall1, and wall2. For example, the following codes add pivot, segment0 and segment1 to the display
list:

pivot = new Pivot(26,18,0x66CCFF);
 addChild(pivot);

 pivot.x = anchorX;
 pivot.y = anchorY;
 segment0 = new Segment(segment0Length,segmentWidth, true,0x999999);

 addChild(segment0);
 segment0.x = pivot.getPin().x;
 segment0.y = pivot.getPin().y;
segment0.rotation = 150; // rotate 150 degree clocks-wise to align it to the angle of 60 degree from vertical
segment1 = new Segment(segment1Length,segmentWidth, false,0x666666);

 addChild(segment1);
 segment1.x = segment0.getPin().x;
 segment1.y = segment0.getPin().y;
 segment1.rotation = 150;
 arrow0 = new Arrows(0,0,50);

 addChild(arrow0);
 arrow0.x = segment0.getPin().x;
 arrow0.y = segment0.getPin().y;
 arrow0.alpha = 0;
 arrow1 = new Arrows(0,0,50);

 addChild(arrow1);
 arrow1.x = segment1.getPin().x;
 arrow1.y = segment1.getPin().y;
 arrow1.alpha = 0;

In the above code, the Pivot() function accepts three parameters: pivot width and pivot height in Number data type, and
colour in Unit data type. The Segment() function needs four parameters: segment width and segment height in Number
data type, centre line in Boolean data type to show the centre line of the segment (true) or not (false). The Arrows()
function shows the vector arrow0, at the temporary point (0, 0) with the length of 50 pixels. The vector is also
temporarily hidden (arrow0.alpha = 0) because the mechanism has not moved yet.

Then, its real location is determined by assigning its coordinates to the end point of segment0 (arrow0.x =
segment0.getPin().x; arrow0.y = segment0.getPin().y). Its real orientation will be changed according to the user’s input.
The code for this control is presented below in an IF statement.

The anchorX and anchorY were the coordinates where the authors wished to put the pivot. Once the pivot is added on
the stage, the positions of other components in the chain depend on the preceding ones thanks to the getPin() method
embedded in each class. For example, the coordinates of segment0 depend on the pivot’s location (segment0.x =
pivot.getPin().x; and segment0.y = pivot.getPin().y) and the coordinates of segment1 depend on the segment0’s location
(segment1.x = segment0.getPin().x; and segment1.y = segment0.getPin().y). The animation was initiated whenever the
users manipulate Slider1. An event handling function will listen to any move of Slider1 and call another function
onChange() which calculates the relative location of each component of the mechanism depending on the output value
of Slider1. Details of the function onChange() are given below:

Slider1.addEventListener(Event.ENTER_FRAME,onChange);
function onChange(event:Event):void
{

outputValue = Slider1.value;
thetaText.text = outputValue.toFixed(1);
Bx = -0.52;
By= -Math.sqrt(0.16 -Math.pow((-0.52+0.2*Math.sin((outputValue)*Math.PI/180)),2))

 - 0.2*Math.cos((outputValue)*Math.PI/180);
Ax = -0.2*Math.sin((outputValue)*Math.PI/180);
Ay = -0.2*Math.cos((outputValue)*Math.PI/180);

72

Chi = Math.atan((By - Ay)/(Bx-Ax));
Rx = (-0.4 * Math.cos(Chi));
Ry = (-0.4 * Math.sin(Chi));
OmegaAB = (0.6*Math.cos((outputValue)*Math.PI/180))/Ry;
Vb = 0.6*Math.sin((outputValue)*Math.PI/180) - OmegaAB*Rx;

segment0.rotation = outputValue + 90;
segment1.x = segment0.getPin().x;
segment1.y = segment0.getPin().y;
arrow0.x = segment0.getPin().x;
arrow0.y = segment0.getPin().y;
segment1.rotation = 180 - Chi * 180 / Math.PI;
block.x = segment1.getPin().x;
block.y = segment1.getPin().y;
arrow1.x = segment1.getPin().x;
arrow1.y = segment1.getPin().y;
prevX = curX;
prevY = curY;
curX = segment0.getPin().x;
curY = segment0.getPin().y;

}

An IF statement compares the current coordinates of point A with its coordinates in the previous time frame and
determines the directions and magnitudes of velocity vectors. This IF statement is inserted in the onChange() function:

if ((prevY>curY)||(sliderValue==90))
{

arrow0.alpha = 1; // when the mechanism is in motion, the velocity vector is shown
arrow0.rotation = outputValue -180;
arrow1 = new Arrows(0,0,int(Vb*Vscale));//Vscale adjusts true value Vb to draw it on the stage
addChild(arrow1);
arrow1.x = segment1.getPin().x;
arrow1.y = segment1.getPin().y;
arrow1.rotation = -90;

}
else if (prevY < curY)
{

arrow0.alpha = 1;
arrow0.rotation = outputValue;
arrow1 = new Arrows(0,0,int(Vb*Vscale));
addChild(arrow1);
arrow1.alpha = 1;
arrow1.x = segment1.getPin().x;
arrow1.y = segment1.getPin().y;
arrow1.rotation = 90;
if (sliderValue == 60)

{
arrow1.alpha = 0;
arrow0.alpha = 0;
}

}

In summary, in this animation, the developers and users can control the variable outputValue to move the short segment
(segment0) and, then, control the motion of the whole mechanism.

GENERAL PLANE MOTION AND THE PRINCIPLE OF CONSERVATION OF ENERGY WITH A YOYO

The motion of a yoyo can be used to learn engineering dynamics problems involving general plane motion and the
principle of conservation of energy. The animation requires two objects: string and yoyo (Figure 2a). To create the
string object, the authors drew a vertical line and converted it into the movie clip symbol (string_mc). Then, they placed
an instance of this symbol (also string_mc) on the stage. The registration point of the string_mc symbol was set at the
bottom of the string (Figure 2b). They created the yoyo object by drawing a circle (the four coloured pies and its centre
are optional) and, then, converted it into the movie clip symbol yoyo with the option box Exported for ActionScript
checked. Its registration point was set at the centre of the symbol (Figure 2b). Motions of the string and yoyo objects are
best animated by using the tween class. After putting the instance string_mc on the stage and adding the yoyo object to

73

the display list by using the addChild() method, the authors used the new operator to create a new instance of the tween
class. Following is an example:

var myYoYo:YoYo = new YoYo ;
addChild(myYoYo):
var tweenY:Tween = new Tween (myYoYo,"y",Strong.easeOut, originalY, originalY + 270, 2,true);
var tweenRotation:Tween = new Tween(myYoYo,"rotation",Regular.easeOut,0, - myAngle, 2,true);
var string:Tween = new Tween (string_mc,"y", Strong.easeOut, string_mc.y, string_mc.y + 270, 2, true);

Figure 2: a) String and yoyo; and b) registration points and instance names of movie clip symbols.

The above tween commands come with several parameters. The first parameter is the object to be animated (myYoYo).
The second parameter is the name of the property, which will be animated. The properties of a display object can be x, y,
alpha, width, height, xscale, yscale, rotation, etc. The third parameter is the easing effect, which will determine how the
tween animation will run. The Adobe fl.transitions.easing class lists 19 easing effects used to mimic the motions of
an object moving with a variable acceleration [9]. The Elastic.easeOut and Strong.easeOut parameters render motions
that are very close to the motion of a yoyo in action. The fourth and fifth parameters are the starting and ending position
of the yoyo. They must be specified as numbers. The sixth parameter (number 2) is the duration of the tween. And lastly,
the last parameter specifies the unit of the fifth parameter as the second (true) or frame (false). In this case, the duration
of the tween is two seconds. For the rotation of the yoyo object, the fourth and the fifth parameters are starting (0°) and
ending angles (myAngle) in degree. A negative value indicates that the rotation is counter clockwise.

In summary, in this animation, the developers and users can control the following variables to change the ways the yo-yo
run: height and width (or the radius of yo-yo).

MOMENT OF INERTIA AND THE PRINCIPLE OF CONSERVATION OF ENERGY WITH INCLINED PLANES

In this section, the authors describe the animation of two objects rolling down without slipping, on two inclined planes.
The problem is set up as follows. The spring is initially un-stretched and connected to objects A and B. Object A is
a thin hoop and object B is a solid cylinder (Figure 3a). The spring constant k = 10 N/m. Both objects have the same
radius r = 0.05 m, the same mass m = 2 kg, and are released from the same height h = 0.4 m. The question is to
determine the speeds of the mass centres of objects A and B when they reach the bottom.

a) b)

Figure 3: a) Thin hoop and solid cylinder on inclined planes; and b) components to be animated.

On the stage, the authors set up two systems of an inclined plane problem. Each system consists of a spring, a stem, and
a wheel, which are converted to movie clip symbols to facilitate the animation (Figure 3b). Tween motions are applied

74

to each component. For instance, the tween motion of the wheel A includes translational tweens on x and y directions
and a rotational tween for the rotation of the wheel. Following are the codes:

var tweenWheelAx:Tween = new Tween(wheelA,"x",Regular.easeOut,startAx,finishAx,timeA,true);
var tweenWheelAy:Tween = new Tween(wheelA,"y",Regular.easeOut, startAy,finishAy,timeA,true);
var tweenWheelARot:Tween = new Tween(wheelA,"rotation",Regular.easeOut,0,450,timeA,true);
var tweenStemAx:Tween = new Tween(stemA,"x",Regular.easeOut,671,bottomX,timeA,true);
var tweenStemAy:Tween = new Tween(stemA,"y",Regular.easeOut,300,bottomY,timeA,true);
var tweenSpringAScaleY:Tween = new Tween(springA,"scaleY",Regular.easeOut,1,2.853,timeA,true);

As with the case of yoyo animation, the tween commands use the third parameter to determine how the objects move. The
authors used the Regular.easeOut parameter to mimic the spring-like action. The sixth parameter timeA is the duration of
the tween. TimeA can be a true time for wheel A travelling on the inclined plane given that its translational velocity, its
diameter, and the travel distance are known. However, for the purpose of illustration, timeA can be any number, which is
large enough, so that the motion is discernible by learners. Remember, the use of a mathematical model can be ignored for
many animations. In some cases, the value of timeA can be artificially exaggerated and controlled by users via dials, buttons,
input fields or scrollbars to make the motion to become much slower and facilitate student learning.

Note that, with the given facts in the problem statement, the velocity of wheel B (Equation (5)) is always approximately
1.15 times faster than that of wheel A (Equation (4)).

From the facts about wheel A’s diameter and the length of its trajectory on the stage, the authors determined the total
rotation angle of wheel A, which was from 0° to 450° in our case. The last parameter is set as true because the authors
use the second as the unit for timeA. The springs A and B are two instances of the movie clip symbol coil that was
previously created and put in the library. On the stage, the two instances are rotated 30° on a vertical axis, so that they
can lay down on inclined planes. To animate the stretching of springs in 2D, the authors apply tween motion for scaleY
to make the spring longer in the Y direction. This technique keeps the overall shape and the width of the spring in the x
direction intact. The only disadvantage of this technique is that the line stroke of the spring wire looks bolder when it is
stretched. However, with a small expansion of scaleY, the distortion can be unnoticeable.

In summary, in this animation, the developers and users can control the following variables to change the ways two
objects run down an inclined plane: the radius and mass of the objects, the height of the inclined plane, and the time
(timeA) for the objects moving down the ramp.

STUDENT FEEDBACK

During a recent semester, the authors developed and implemented a set of CA modules for students to learn rigid body
dynamics. These CA modules also included the ones that employed user-controlled animations described in this article. The
students were exposed to each CA module after they finished the lesson from regular in-class instruction on the same topic
introduced in the CA modules. At the end of the semester, survey questions were administrated as shown in Table 1. These
questions used a five-point Likert scale, ranging from 1 = strongly disagree to 5 = strongly agree. Except for student
responses connecting the usage of CA modules and students’ motivation, most students indicated that the CA modules
increased 1) their confidence for learning engineering dynamics (53%); 2) their conceptual understanding of rigid body
dynamics (59.4%); and 3) their procedural skills for solving rigid body dynamics problems (55%).

Table 1: The results of student surveys.

Survey questions Student responses (n = 54 - 69)
Q1: Do you agree with the statement: Overall, these modules increase my
confidence for learning engineering dynamics?

53% agree or strongly agree
Median (IQR) = 4 (3,4); n = 68

Q2: Do you agree with the statement: Overall, these modules increase my
motivation for learning engineering dynamics?

38.2% agree or strongly agree
Median (IQR) = 3 (2,4); n = 68

Q3: Do you agree with the statement: Overall, these modules increase
my conceptual understanding of rigid-body dynamics problems?

59.4% agree or strongly agree
Median (IQR) = 4 (3-4); n = 54

Q4: Do you agree with the statement: Overall, these modules increase
my procedural skills of solving rigid-body dynamics problems?

55% agree or strongly agree
Median (IQR) = 4 (3-4); n = 69

 Note: IQR = Interquartile range

Representative students’ comments are provided as follows:

(4)

(5)

75

• I really struggled with learning these sections in class, and the simulations clearly showed how these concepts
were applied. I liked the simulations because they illustrated the changes in instantaneous centre and the velocity
which were a couple concepts that I had a hard time with.

• They were easy to follow and learn from. I liked how you could change certain factors in the problem like mass, or
radius and to see how those factors would change the outcome of the problem.

• Being able to visualize what was going on in the problem and gaining a visual of what I was solving for was
incredibly helpful in increasing my understanding of the concepts behind each problem.

• I am able to better see the relations of variables to each other to which helps me see the big picture.
• The ability to change parameters like mass and velocity helped me understand how mass moment of inertia

changed how the rigid body reacted.

CONCLUSIONS

Along with the ever-increasing use of computers in education, there is a growing trend of using computer animation to
improve student visualisation and understanding of abstract concepts and complex motion. In engineering education,
computer animation provides students with external and dynamic visualisations, which is a big advantage over text and
static graphics. While most computer animations can be created in the Flash Professional environment, creating
animations with AS3 provides instructional developers with the flexibility in manipulating variables, gives users control
over animation and make the learning with animation more effective.

ACKNOWLEDGEMENT

This material is based upon work supported by the US National Science Foundation under Grant No. DUE 1122654.

REFERENCES

1. Ha, O. and Fang, N., Computer simulation and animation in engineering mechanics: a critical review and analysis.
Proc. American Society for Engng. Educ. Annual Conf. & Exposition, Atlanta, GA (2012).

2. Ayres, P., Kalyuga, S., Marcus, N. and Sweller, J., The conditions under which instructional animation may be
effective. Proc. Inter. Workshop and Mini-conf., Open University of the Netherlands (2005).

3. World Wide Web Consortium, Authoring Tools, Social Media (2015). 11 June 2014,
http://www.w3.org/standards/agents/authoring

4. Adobe, Statistics (2015), 14 June 2015, http://www.adobe.com/products/flashruntimes/statistics.html
5. Kozhevnikov, M., Motes, M.A. and Hegarty, M., Spatial visualization in physics problem solving. Cognitive

Science, 31, 4, 549-579 (2007).
6. Yaiser, M., Object-oriented programming concepts: objects and classes (2011), 14 June 2015,

http://www.adobe.com/devnet/actionscript/learning/oop-concepts/objects-and-classes.html.
7. Peters, K., Foundation Actionscript 3.0 Animation: Making Things Move! California: Apress (2007).
8. Peters, K., Source code/Downloads (2007), 4 March 2014, http://www.apress.com/9781590595183.
9. Adobe, Package fl.transitions.easing (2014), 11 June 2015, http://help.adobe.com/en_US/FlashPlatform/

reference/actionscript/3/fl/transitions/easing/package-detail.html.

BIOGRAPHIES

Oai Ha has a PhD in Engineering Education from Utah State University, an MS in
mechanical engineering from California Polytechnic State University at San Luis Obispo, and
a BS in mechanical engineering from University of Technology in Ho Chi Minh City,
Vietnam. His research interests include mechatronics, automation control, virtual reality,
spatial visualisation abilities, and cognitive processes in engineering design and problem
solving.

Ning Fang is a Professor in the Department of Engineering Education in the College of
Engineering at Utah State University, USA. He has taught a variety of courses at both
graduate and undergraduate levels, such as engineering dynamics, metal machining, and
design for manufacturing. His areas of interest include computer-assisted instructional
technology, curricular reform in engineering education, the modelling and optimisation of
manufacturing processes, and lean product design. He earned his PhD, MS and BS degrees in
mechanical engineering and is the author of more than 60 technical papers published in
refereed international journals and conference proceedings.

76

http://www.w3.org/standards/agents/authoring

	Developing user-controlled animations with Actionscripts 3.0 to enhance student learning of engineering dynamics

