
25

© 2002 UICEEGlobal J. of Engng. Educ., Vol.6, No.1
Published in Australia

INTRODUCTION

Engineering education can deliver training that is all-
inclusive and systematic in the design, development,
maintenance and management of intricate technical
systems. Without question, such education provides the
necessary technical depth to graduates. However,
many technical systems are best understood from the
perspective of human perceptions and also that of a
wider socio-economic context. It has been well docu-
mented that the success of technical projects is quite
often almost entirely dependent on these factors.

It is a curious paradox that the software industry
has helped provide the means by which others have
been able to automate, reengineer and economy-scale
their businesses, that is, reduce the human variable,
and yet remains itself very people sensitive and
intensive. For example:

A Case for System Dynamics*

Craig W. Caulfield
S. Paul Maj

Edith Cowan University, 2 Bradford Street, Mount Lawley, Perth, WA 6050, Australia

Engineering education provides a thorough and systematic training in the design, development,
maintenance and management of complex technical systems. While such education provides the
necessary technical depth to graduates, many technical systems are best understood from the
perspective of human and socio-economic relationships. A case in point may be Fred Brooks’ law
that states adding more developers to a late software engineering project will only make it even
more behind schedule. Brooks’ law is based on the understanding that additional, new software
engineering staff will need time to come up to speed with the project and in doing so will divert the
existing developers from their primary tasks. While Brooks’ law is intuitively appealing, students
and practicing software engineers really have no way of testing its efficacy in their particular
situations. A tool to overcome this difficulty may be system dynamics. System dynamics is a
systems thinking methodology for building quantitative and qualitative models of complex situations
so that they can ultimately be better understood and managed. Accordingly, it can be argued, that
system dynamics should be an essential part of the education of engineers from most, if not all, of
the major disciplines.

*A revised and expanded version of a keynote address
presented at the 3rd Asia-Pacific Forum on Engineering
and Technology Education, held in Changhua, Taiwan,
from 8 to 11 July 2001. This paper was awarded the UICEE
diamond award (first grade) by popular vote of Forum
participants for the most significant contribution to the
field of engineering education.

Highly skilled people with appropriate
experience, talent, and training are key to
producing software that satisfies user needs
on time and within budget. The right people
with insufficient tools, languages, and
process will succeed. The wrong people (or
the right people with insufficient training or
experience) with appropriate tools, lan-
guages, and process will probably fail [1].

Tom DeMarco, co-author of the often-cited
Peopleware, has found that most software develop-
ment managers agree with this premise that a project’s
sociology will contribute more to the final outcome
than the project’s technology [2]. Sociology, in this
context, means addressing issues such as team
formation and dynamics, role assignment, hiring,
motivation, workplace design, training and many other
peopleware practices. However, the same managers
do not conduct their projects with this regard and
instead focus on that aspect they are most comfort-
able with: technology;

The evident reason for this is that the man-
ager knows how to do technology, but not
how to do sociology. He/she doesn’t know
how to manage [3].

C.W. Caulfield & S.P. Maj26

One of the golden rules of software engineering
texts maybe a case in point - Fred Brooks’ informal
law that states that adding more software developers
to a late project will only make it later [4]. Brooks’
law is based on the understanding that the new devel-
opers will need time to come up to speed with the
project and in doing so will divert the existing devel-
opers from their primary and now critical tasks. While
Brooks’ law is intuitively appealing, students and
practicing software engineers really have no way of
testing its efficacy in their particular situations because
such systems are difficult to model.

One possible way to address such situations is by
using the systems thinking methodology, system
dynamics.

System dynamics is concerned with building
quantitative and qualitative models of complex prob-
lem situations and then experimenting with and study-
ing the behaviour of these models over time. Often
such models will demonstrate how unappreciated
causal relationships, dynamic complexity and struc-
tural delays may lead to counter-intuitive outcomes of
less-informed efforts to improve the situation. System
dynamics models make room for soft factors such as
motivation and perceptions so that engineering projects
can ultimately be better understood and managed.

This paper presents some initial results of imple-
menting a simple model of Brooks’ law using a
system dynamics modelling software package called
iThink to support the argument that system dynamics
should be an essential part of the education of
engineers from most, if not all, of the major disciplines.
The model is then extended beyond Brooks’ exact
scope to demonstrate how it might be possible to
incorporate and validate soft variables alongside the
more traditional variety.

SYSTEM DYNAMICS

In the late 1950s, Jay Forrester of the Sloan School of
Management at the Massachusetts Institute of Tech-
nology (MIT) was asked by General Electric to
review the operations of their Kentucky appliance parts
plant. The company was concerned about the oscil-
lating nature of their production cycles that often saw
periods of intense activity followed by times of virtual
dormancy during which workers had to be laid off.
Fluctuating demand and normal business cycles did
not seem to adequately explain the situation. Coming
from an electrical engineering background and with a
keen interest in management science, Forrester
approached the problem systematically, but with just
a pencil and a note pad. Starting with columns for
inventory, employees and orders, and factoring in:

...the policies they were following, one could
decide how many people would be hired in the
following week. This gave a new condition of
employment, inventories, and production [5].

Forrester’s calculations amounted to a simulation of
the system operating at General Electric’s plant.

Stemming from this first analysis came an article for
the Harvard Business Review in 1958 entitled Indus-
trial Dynamics - A Major Breakthrough for Decision
Makers with the theme being developed and expanded
in the seminal work, Industrial Dynamics [6]. Industrial
dynamics became system dynamics as it came to be
used in areas other than industry.

For some time following the publication of Indus-
trial Dynamics, system dynamics was used as a tool
for looking at big-picture issues such as urban decay,
major sociological conditions and world economics
[7-9]. In more recent times, system dynamics has come
back from the big end of town and has been finding a
purpose for itself in a range of business and social
applications. Instrumental in this change have been
Peter Senge’s The Fifth Discipline [10], and the
development of intuitive, graphical software packages
that have made system dynamics modelling more
democratic by hiding the computer source-code look
of traditional models. As a measure of this democ-
racy, system dynamics now finds a place for itself in a
number of primary and secondary schools in the
United States of America, Australia and Europe, well
beyond its ground zero at MIT.

To more formally define system dynamics, it could
be said that it:

…is concerned with creating models or
representations of real world systems of all
kinds and studying their dynamics (or
behaviour). In particular, it is concerned
with improving (controlling) problematic
system behaviour… The purpose in applying
System Dynamics is to facilitate under-
standing of the relationship between the
behaviour of the system over time and its
underlying structure and strategies/policies/
decision rules [11].

A key element of this definition is the need to build
a computer model of the system under consideration.
The model is used to help understand the patterns of
change or dynamics that a system exhibits over time
and to identify the conditions that cause these
patterns to be stable or unstable. This knowledge of the
system can then suggest what kinds of prescriptions
for governing it will work and what kinds may
not [12].

A Case for System Dynamics... 27

However, building system dynamics models
demands persistence. Translating real-world informa-
tion into model elements is still an inexact science -
trial and error can be just as valid as considered judge-
ment based on experience. Perhaps a useful parallel
can be drawn with that other hard, inexact activity:
finding object-oriented classes. Bjarne Stroustrup, the
creator of C++, notes that in design and programming
there are no cookbook methods that can replace intel-
ligence, experience and good taste; even he just tries
things [13]. The lesson for system dynamics modellers
would seem to be the same: just start, try things, take
advice of experienced modellers and then iterate,
iterate, iterate.

Yet the effort of building a system dynamics model
has some benefits including:

• Modelling brings about an understanding of the
system because of the analytical and critical think-
ing process it calls for. It helps bring to the
surface the mental models driving the current
situation - those models

...that one carries around in one’s head
for dealing with a problem or situation.
Such a model maybe based on experience
or intuition, or on folklore and myth; it
may be influenced by politics and a wide
spectrum of human emotions [14].

Mental models may also be totally inappropriate
or counter-productive, or equally priceless. But
unless they are turned into something more tangible,
one may never know.

• System dynamics models make room for both
quantitative or hard variables, being things that can
be measured directly like program size, staffing
numbers or dollars spent; and qualitative or soft
variables such as motivation, commitment, confi-
dence or perceptions. Soft variables have tradi-
tionally been left out of engineering models
because they are difficult to measure and their
importance may have been underestimated. Yet,

...if you omit soft variables you run the risk
of failing to capture something essential
to driving human affairs. Leaving out some-
thing so essential is the only hypothesis that
you can reject with absolute certainty! [15].

A system dynamics model can therefore be more
informed about its problem space.

With a system dynamics model in hand and George
Box’s tongue-in-cheek caution in mind (all models are
wrong, but some are useful), the model can be run.
Certain variables can be held steady while others are

changed, it can be placed under stress and tested for
sensitivities and leverage points. In short, the model
can be experimented with to better understand the
present situation and to search for alternatives for
improvement. It has been stated that:

The alternatives may come from intuitive
insights generated during the [initial analy-
sis], from experience of the analyst, from
proposals advanced by people in the oper-
ating system [or in the] experience, art, and
skill for imagining the most creative and
powerful policy alternatives [16].

Peter Senge points out that the causes of many
problems

...lay in the very well-intentioned policies
designed to alleviate them. These problems
were actually systems that lured policy
makers into interventions that focused on
obvious symptoms not underlying causes,
which produced short-term benefit but long
term malaise, and fostered the need for still
more symptomatic interventions [10].

By simulating a problem space using a system
dynamics model, it is possible to potentially make more
informed decisions about events beyond our bounded
rationality safe from the dangers of real-world experi-
mentation.

BROOKS’ LAW

During the 1950s and early 1960s, Fred Brooks worked
for IBM as a programmer and hardware architect. In
1964, he became the manager of IBM’s Operating
System/360 development, a large-scale and complex
project intended to provide IBM’s mainframe
computers with a leading-edge operating system. To
give an idea of the size of the project:

…the initial Windows NT project required
about 1,500 staff-years of effort, but the
development of IBM’s OS/360, which was
completed in 1966, required more than three
times as much effort [17].

His experiences, frustrations and joys during this
time, and his observations of the wider industry after
moving to the University of North Carolina, are
embodied in the collection of essays The Mythical
Man-Month [4]. The title refers to that fundamental
unit of measurement and scheduling, the man-month;
a unit that Brooks believes is often misunderstood:

Cost does indeed vary as the product of the
number of men and the number of months.

C.W. Caulfield & S.P. Maj28

Progress does not. Hence the man-month as
a unit for measuring the size of a job is a
dangerous and deceptive myth. It implies that
men and months are interchangeable [4].

His law that states adding more software developers
to an already late project will only make the problem
worse is based on this lack of interchangeability of
manpower and time. The cause lies in two areas:

• The new developers will need to be acquainted
with the overall aims of the project, its strategy
and the general plan of work. During this time,
the new developers will not be full contributors
and will likely divert the existing developers away
from their primary tasks.

• If a group of developers, n, need to coordinate
their efforts with each other then the number of
communication paths can be represented by
n (n – 1)/2. This represents an interaction over-
head, which may be realised in the form of project
meetings, technical walkthroughs and complying
with any progress reporting requirements.

Brooks’ law is intuitively appealing and is gener-
ally supported in the literature [14][18-20]. Writing in
the 20th anniversary edition of The Mythical
Man-Month in 1995, Brooks acknowledged that his
law was outrageously simplified, yet he still felt that it
was the:

…best zeroth-order approximation to the
truth, a rule of thumb to warn managers
against blindly making the instinctive fix to
a late project [4].

Yet, turning Brooks’ law into something more than
a rule of thumb, it should be able to be tested whether
it is a useful concept outside the large-scale big
business and government projects Brooks’ was most
familiar with.

MODEL EXPLANATION

The following model of Brooks’ law has been created
using a system dynamics modelling package called
iThink. The grammar of iThink consists of only four
basic elements (stocks, flows, rates and connectors)
and is largely intuitive so it will not be expanded upon
here. Further details are provided in Appendix 1.

In addition, a range of assumptions is made that
will naturally vary according to local conditions. What
is important is not so much the magnitude of these
assumptions in this particular instance, but that they
are relevant to the problem space under consideration
and that they can be changed as needed.

Looking to the model, there is a hypothetical soft-

ware development project in hand that has been
estimated at 36-man months, or 6,240 hours, and must
be completed within six months. To meet this deadline
a staffing level of six developers has been approved.
However, the project starts with only five developers,
three of whom are experienced, meaning they are
aware of the objectives of the project and the plan of
work; and two who are new-hires. It is assumed that
the new-hires will only be half as productive as their
colleagues but will gradually come up to speed as they
are assimilated. This transitioning from new-hires to
experienced developers has been set at three months.

Recruiting is under way to bring the team up to full
strength but advertising the position, assessing the
applicants and making a decision all takes time. There-
fore, a delay of some two months is not unreasonable
[14]. At the same time, staff are likely to leave. For
the purposes of this model, it is assumed that the
average employment time will be nine months and,
for simplicity, it is assumed that developers will not
quit the team before becoming experienced developers.
Figure 1 represents to model to this stage.

Staff enter the plumbing of the iThink diagram
from the left, progressing to the right as they pass
from being new-hires to experienced developers until
they perhaps eventually leave the team. The Total
Present Workforce will therefore be the sum of the
two groups of developers. If the Total Present
Workforce is less than the Approved Workforce, a
Workforce Gap will exist and the hiring process will
be initiated, subject to the prescribed delay of two
months. Figure 2 represents the workflow of the
project.

The team has 36 man-months of work to complete,
therefore at the start of the simulation Remaining
Work will represent this amount. Work units will flow
towards Work Completed at a rate determined by

Figure 1: Model for personnel development in the project.

New Hires Experienced Workforce

Quit Rate
Hiring Rate Assimilation Rate

Hiring Delay

Workforce Gap

Approved Workforce

Total Present Workforce

A Case for System Dynamics... 29

the overall productivity of the team. Occasionally, there
may be a spike in Work Remaining if the scope of
the project is expanded or if the original work
estimates have been found to be underestimated.

The total productivity of the team will be a
function of the total workforce, the number of hours
each person works per week, which has been set at
a standard 40, the assumed productivity of the new-
hires versus their more experienced colleagues and
taking into account the interaction overhead required
to coordinate all the individual development efforts.
For the purposes of this model, it is assumed that
the interaction overhead represents one hour per
developer per week per communications path. If
there are five developers, this equates to ten
communications paths, and therefore ten hours
per week per developer consumed in this over-
head. The model in its entirety is represented by
Figure 3.

MODEL RESULTS

Setting the model to run under the initial conditions
described above produces the graph in Figure 4.

The approved workforce consists of six developers,
but at the start of the project only five are on hand.

08:48 am Sun, 17 Dec 2000

1.00 15.75 30.50 45.25 60.00

Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0.00

5.00

10.00

0.00

4500.00

9000.00

0.00

5.00

10.00

1: Experienced W 2: New Hires 3: Remaining Work 4: Work Completed 5: Approved Work

1

1 1

1

2

2 2

2

3

3

3

3

4

4

4

4

5 5 5 5

Graph 1 (Brooks Law)

Figure 4: Graphical representation of the initial conditions.

Remaining Work Work Completed
Total Production Rate

New Hires Experienced Workforce

Quit Rate
Hiring Rate Assimilation Rate

Hiring Delay

Person Hours

Hours per person per week

Spike

Workforce Gap

Interaction Penalty

Approved Workforce

Total Present Workforce

Figure 3: The model in its entirety.

Remaining Work Work Completed
Total Production Rate

Person Hours

Hours per person per wee

Spike

Interaction Penalty

Figure 2: Workflow of the project.

C.W. Caulfield & S.P. Maj30

The number of experienced workers gradually in-
creases and the number of new hires dips as the latter
come up to speed. The employment of one new de-
veloper, after the prescribed two-month delay, is
masked in this transition. After nine months, or 36
weeks, experienced developers begin to leave, which
initiates the hiring process again.

Even allowing for the fact that the project started
with one developer less than required, the graph
indicates that simply dividing the effort by the number
of staff on hand will not yield an overall completion
time. With the best will, the project will take nearly 12
months to complete rather than the original six.

Assume now that the project has been underway
for five months, or 20 weeks, when it is discovered
the original man-month estimates were understated.

Another 12 man-months of work have been
assessed. Assuming 40-hour weeks and a present staff
of six developers, this means the project will be
extended by another eight weeks. To bring this figure
down, the project manager decides to increase the
approved staffing to eight developers. The resulting
graph under these circumstances is shown in
Figure 5.

Despite bringing on more staff, the project is still
not able to hit its revised completion date and now
takes nearly 18 months to complete.

ENHANCEMENTS TO BROOKS’ LAW

The variables that make up the model of Brooks’ law
thus far are informed by the quantitative, or hard, data
typical to an engineering project. Yet, it may be as

11:02 am Sat, 23 Dec 2000

1.00 18.75 36.50 54.25 72.00

Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0.00

5.00

10.00

0.00

4500.00

9000.00

0.00

5.00

10.00

1: Experienced W 2: New Hires 3: Remaining Work 4: Work Completed 5: Approved Work

1

1

1 1

2 2
2 2

3
3

3

3

4

4

4

4

5

5 5 5

Graph 1 (Brooks Law)

Figure 5: Graphical representation of the revised conditions.

relevant to consider such a project from a socio-tech-
nical point of view, raising the need to evaluate quali-
tative, or soft, data. For example, soft factors may
need to be considered, such as morale, commitment
and knowledge levels, alongside hard factors such
as headcounts, dollars spent and deliverablesThis is
because such factors can have an impact in areas
such as productivity and hence completion times and
cost.

As mentioned previously, system dynamics makes
room for these soft factors. To demonstrate how this
might be possible the model of Brooks’ law has been
extended to incorporate a number of soft variables
such as occupational stress and stakeholders’ percep-
tions of quality of the deliverables.

The relationship between occupational stress and
job performance has been well documented, discussed
and modelled [21-25]. A certain level of stress is

…healthy and enables employees to feel a
sense of achievement and to get satisfaction
from the job. However, if the amount of stress
exceeds the optimum and starts to place
excessive demands on the employee, the
result will be lower performance. At this
point, the employee loses the ability to cope,
finds difficulty in making decisions and
demonstrates erratic behaviour [25].

Meanwhile, the way in which clients perceive the
quality of the service they receive can be considered
a key performance indicator that has implications for
remuneration packages and other penalties or rewards
defined in service level agreements. These factors are,

A Case for System Dynamics... 31

therefore, considered as relevant additions to a model
of a software development project.

The aim here is to show how it might be possible to
incorporate qualitative factors, specifically perceptions
of quality, into a model and then to show how it might
be validated to the point where it could be used as a
tool to influence policy decisions, despite lacking total
quantitative comfort.

PERCEIVED AND ACTUAL QUALITY

In many human transactions there is often a gap
between perception and reality. Festinger discusses
something similar in A Theory of Cognitive
Dissonance [26]. Elements of an individual’s cogni-
tion (things a person knows about themself, their
behaviour, their surroundings) may deviate markedly
from reality creating an uncomfortable dissonance. The
cause of this dissonance may be imperfect knowledge
about a situation or simply a factor of human society:
very few things are all black or all white; very few
situations are clear-cut enough so that opinions
or behaviours are not to some extent a mixture of
contradictions [26]. Furthermore, the dissonance may
be fleeting or long-lasting; or an individual may be
working to resolve and reduce the dissonance in some
way or equally simply ignoring it. The result is that
what we know and what we do may be inconsistent.

An example might illustrate the point. The quality
of service experienced by a client, and therefore their
perception of that quality, may be different for the
actual quality being offered by the provider more
generally. It could be the case that at a point in time, a
client happened to encounter a staff member fully
aware of their needs and were able to have their trans-
action completed quickly and efficiently. However, the
rest of the provider’s clients that day may not have
been so lucky. Through incomplete knowledge a gap
is created between perceived and actual quality.

The size of this gap can also grow, shrink and over-
shoot because there is often resistance, and therefore
a delay, in adjusting perceptions and then taking
action. A single experience of good or bad service
may not cause a reaction, but an accumulation of such
experiences will. The magnitude of this delay can be
influenced by factors including the level of industry
competition, client loyalty and mobility and the
frequency of client contact [27].

Furthermore, this relationship will likely be
asymmetric. When reality is less than perception,
perceptions are adjusted rapidly as represented in
Figure 6 (bad news travels quickly).

On the other hand, when reality is greater than
perception, the adjustment time is much longer as

Figure 8: The service quality model component.

represented in Figure 7 (it may take ten good experi-
ences to overcome a single bad experience).

Within the model of Brooks’ law, perceived and
actual quality are exhibited in Figure 8.

 The factors that determine quality have many
interpretations [28]. However, for the purposes of this
model, actual quality is taken to be a measure of the
timeliness of the deliverables and the gap between
the delivered functionality and the client’s requirements

Figure 6: When actual quality is less than perceived
quality, perceptions are quickly adjusted.

Figure 7: When actual quality is greater than perceived
quality, perceptions are more slowly adjusted.

Perceived Quality

Change in Perception

Actual Quality

~

Time to Adjust

C.W. Caulfield & S.P. Maj32

[29]. The dynamics of these variables influencing ac-
tual quality are outside the scope of this fragment of
the model and are only shown as a generic inflow.
Meanwhile, perceived quality is taken to be a subjec-
tive gauge of how the project’s clients see the service
level they are receiving. The inconsistency between
actual and perceived quality and their relative levels
will determine the rate at which the level of perceived
quality will change in line with Figures 6 and 7.

Variables such as actual and perceived quality are
soft factors that cannot be measured in the same way
as physical quantities. So, for the purposes of model-
ling, these need to be quantified instead, that is, set
them against an index of some kind [15]. In this case,
0 is taken to be a total absence of quality, while 100 is
taken to be total fulfilment. At the start of the model,
perceived quality is set to a value between 0 and 100
representing the current circumstances. As the
dynamics of the model are played out over time, the
levels of actual and perceived quality may rise and
fall, in turn influencing other model variables.

For example, the level of quality perceived by the
project’s clients may influence future remuneration
contracts and have broader market implications
[29][30]. Internal to the project, this perception may
influence the resources devoted to testing and quality
procedures [31-33]. Again, such impacts appear
outside the scope of this fragment of the model are
shown as a simple outflow.

VALIDATION

For those familiar with models based on more demon-
strable data certainty, the treatment of soft variables
such as occupational stress and perceptions of quality
may seem to threaten the integrity of the final
product. Yet:

As long as the purpose of your model is not to
predict the numerical magnitude of particular
soft variables, you can greatly benefit from
including them in your models. Doing so will
cause you to think in a rigorous manner
about the relationships the variables bear
to other variables in the system [15].

Furthermore, the particular calibration of these
relationships, and therefore the behaviour of the
resulting model, will depend on the individual circum-
stances in which it is applied. For example, the present
model assumes that instances of poor service will be
quickly reflected in a declining perception of the
quality of that service. In an industry with few repeat
clients or long delays between client contacts, the
delay in adjusting perceptions may be longer.

The calibration of soft variables may also seem an
arbitrary process in which the model is made to
respond in a certain manner. However, the way in
which the soft variables react must be internally
consistent, that is, they must generate behaviour that
matches what is observed in the actual system [15].
For example, if delivery deadlines are being consist-
ently missed and required functionality is not being
addressed, then the perceived level of service quality
must decline. If the model produces behaviour
contrary to this real-world pattern, then it needs to be
reworked.

Sensitivity analyses designed to demonstrate inter-
nal consistency feature significantly amongst the range
of tests that Forrester and Senge discuss through which
a system dynamics model may be validated [34].
Importantly, these accepted tests focus more on
validating rather than proving system dynamics
models, on building confidence in a model’s sound-
ness and usefulness as a policy tool rather than rigorous
time point predictions. The compass of a system
dynamics model means that the rules by which it is
validated will be slightly different.

Perhaps the ultimate test of any model is the qual-
ity of the decisions that result from it. It deserves
mention that sometimes very few decisions flowed
from some of the significant, early system dynamics
modelling exercises [35-37]. These models tended to
be large, complex and constructed by academics with
only minimal involvement from the model’s
stakeholders beyond the initial problem definition and
data collection.

Yet, as it is presently practiced, system dynamics
is a very democratic and collaborative process.
Sterman says that system dynamics is not a spectator
sport by which he means involving the stakeholders
early in the process and in doing so, giving them own-
ership of the model, is a critical success factor [38].
Furthermore, by making room for traditionally ignored
soft variables and calibrating the variables according
to real-world knowledge, by facilitating rather than
creating in isolation, a more informed socio-technical
model may be possible.

CONCLUSIONS

The system dynamics model of Brooks’ law presented
here is necessarily generic and simplified and is part
of ongoing research. But, even at this level, it is one
realisation of a mental model that can now be shared,
discussed, calibrated according to local circumstances
and (hopefully) improved upon.

The results in this case tend to support Brooks’
law that adding more software developers to an

A Case for System Dynamics... 33

already late project will only make matters worse.
However, this may not always be so. For example,
using a more detailed model of Brooks’ law, Abdel-
Hamid and Madnick [31-33] found that if the devel-
opers are added early in the project rather than
towards the end, the project will have more chance of
hitting its deadlines. But, without the model, the belief
that this might be so would have been without
support.

Making system dynamics a part of all engineering
disciplines would seem to be an incremental rather
than a discontinuous step since engineers are likely to
be already familiar with the benefits of building
models. Typically these models have been informed
by hard, quantitative data drawn from the model’s
domain. Also present in that domain may be softer,
more qualitative, data that could be equally consid-
ered relevant to the model’s outcome. System dynam-
ics is one way of incorporating soft variables into
models alongside the more traditional variety, while
adding also its underlying theme that more informed
socio-technical models are possible.

As a means of capturing mental models, building
decision flight-simulators and communicating complex
ideas at a higher level than verbal descriptions,
system dynamics deserves serious consideration. In
response, the methodology demands the patience to
understand its concepts, nuances, and power.

REFERENCES

1. Davis, A.M., 201 Principles of Software
Development. Sydney: McGraw-Hill (1995).

2. DeMarco, T. and Lister, T., Peopleware:
Productive Pro-jects and Teams (2nd edn). New
York: Dorset House (1999).

3. DeMarco, T., Non-technological issues in
software engineering. Proc. 13th Inter. Conf. on
Software Engng., Austin, USA, 149-150
(1991).

4. Brooks, F.P., The Mythical Man-Month: Essays
on Software Engineering (anniversary edn).
Sydney: Addison-Wesley (1995).

5. Forrester, J.W., The beginnings of systems
dynamics. Banquet talk given at the Inter. Meet-
ing of the System Dynamics Society, Stuttgart,
Germany, 13 July (1989),
ftp://sysdyn.mit.edu/ftp/sdep/papers/D-4165-1.pdf

6. Forrester, J.W., Industrial Dynamics. Waltham:
Pegasus Communications (1961).

7. Forrester, J.W., Urban Dynamics. Portland:
Productivity Press (1969).

8. Forrester, J.W., World Dynamics. Portland:
Productivity Press (1971).

9. Meadows, D.H., Meadows, D.L., Randers, J. and
Behrens, W.W., The Limits to Growth. New York:
Universe Books (1972).

10. Senge, P.M., The Fifth Discipline: the Art and
Practice of the Learning Organization.
Sydney: Random House (1990).

11. Wolstenholme, E.F., System Enquiry: a System
Dynamics Approach. Brisbane: John Wiley &
Sons (1990).

12. Stacey, R.D., Strategic Management and
Organisational Dynamics. Melbourne: Pitman
Publishing (1996).

13. Stroustrup B., The C++ Programming Language
(2nd edn). Sydney: Addison-Wesley Publishing
Company (1993).

14. Yourdon, E., Rise and Resurrection of the Ameri-
can Programmer. Upper Saddle River: Prentice
Hall (1998).

15. Richmond, B., Modelling “Soft” Variables. An
Introduction to Systems Thinking. Hanover: High
Performance Systems, 9-1 - 9-10 (1999).

16. Forrester, J.W., System dynamics, systems think-
ing and soft OR. System Dynamics Review, 10,
2-3, 245-256 (1994).

17. McConnell, S., After the Gold Rush. Redmond:
Microsoft Press (1999).

18. Boehm, B., Software Engineering Economics.
Upper Saddle River: Prentice Hall (1981).

19. DeMarco, T., The Deadline: a Novel about
Project Management. New York: Dorset House
(1997).

20. Pressman, R.G., Software Engineering: a
Practitioner’s Approach (4th edn). New York:
McGraw-Hill (1997).

21. Selye, H., Stress Without Distress. Philadelphia:
Signet Books (1974).

22. Homer, J.B., Worker burnout: a dynamic model
with implications for prevention and control.
System Dynamics Review, 1, 1, 42-62 (1985).

23. Hooper, N., Coping with the modern ‘madness’.
Business Review Weekly, 17, 17, 38-42 (1995).

24. Kramar, R., McGraw, P. and Schuler, R.S.,
Human Resource Management in Australia.
South Melbourne: Addison Wesley Longman (1997).

25. Stone, R.J., Human Resource Management.
Brisbane: John Wiley & Sons (1998).

26. Festinger, L., A Theory of Cognitive Dissonance.
Stanford: Stanford University Press (1957).

27. McIntyre, P., Loyalty not enough. Business
Review Weekly, 22, 15 December, 104-107 (2000).

28. Crosby, P.B., Quality is Free. New York:
Penguin Books (1980).

29. Aranda, R.R., Fiddaman, T. and Oliva, R.,
Quality microworlds: modeling the impact of

C.W. Caulfield & S.P. Maj34

quality initiatives over the software product
life cycle. American Programmer, 6, 5, 52-61
(1993).

30. Chichakly, K.J., The bifocal vantage point:
managing software projects from a systems think-
ing perspective. American Programmer, 6, 5,
18-25 (1993).

31. Abdel-Hamid, T.K. and Madnick, S.E., Software
Project Dynamics: An Integrated Approach.
Englewood Cliffs: Prentice Hall (1991).

32. Abdel-Hamid, T.K. and Madnick, S.E., Lessons
learned from modeling the dynamics of software
development. Communications of the ACM, 32,
12, 1426-1455 (1989).

33. Abdel-Hamid, T.K., The dynamics of software
project staffing: a system dynamics based
simulation approach. IEEE Transactions on
Software Engng., 15, 2, 308-318 (1989).

34. Forrester, J.W. and Senge, P.M., Tests for
Building Confidence in System Dynamics
Models. In: Legasto, A.A., Forrester, J.W. and
Lyneis, J.M. (Eds), System Dynamics. New York:
North Holland 209-228 (1980).

35. Carlson, B.R., An Industrialist Views Industrial
Dynamics. In: Roberts, E.B. (Ed.), Managerial
Applications of System Dynamics. Waltham:
Pegasus Communications, 139-144 (1999).

36. Fey, W.R., An Industrial Dynamics Case Study.
In: Roberts, E.B. (Ed.), Managerial Applications
of System Dynamics. Waltham: Pegasus
Communications, 117-138 (1999).

37. Schlager, K.J., How Managers Use Industrial
Dynamics. In: Roberts, E.B. (Ed.), Managerial
Applications of System Dynamics. Waltham:
Pegasus Communications, 145-153 (1999).

38. Sterman, J.D., Business Dynamics: Systems
Thinking and Modelling for a Complex World.
New York: Irwin McGraw-Hill (2000).

APPENDIX 1: THE LANGUAGE OF
iTHINK

Essentially, iThink is a language that can be used to
tell a story. System dynamics models described by it
use the following elements of grammar to tell their
story:

Stocks, , are the nouns of iThink. They repre-
sent an accumulation of something at a particular point
in time. The slatted stocks used in the model of Brooks’
law are a special version known as conveyors. They
work in the same way as regular stocks except that
anything entering the conveyor rides along it for a set
period of time and then leaves.

Flows, , are the verbs of iThink. Stuff
flows through the pipe of the flow in the direction of
the arrow and at a rate determined by the flow regu-
lator in the middle. The flow regulator is fitted with a
spigot that can be conceptually tightened or loosened
by other variables within the model. The cloud at the
end of the flow represents the boundary of the model.

Converters, , can be thought of as adverbs that
modify flows. They are often used to break out the
detail of the logic, that might otherwise be buried within
a flow, and might be used to represent constant
values. These typically influence the behaviour of the
regulators on the flows.

Connectors, , tie the other three building
blocks together. They represent inputs and outputs,
not inflows and outflows. Connectors do not take on
numerical values: they merely transmit values taken
on by other building blocks.

BIOGRAPHIES

Craig W. Caulfield graduated
from Murdoch University in
Perth, Australia in 1994 with
a Bachelor of Science in
computer science and
completed a Masters of
Science in software engi-
neering in 2001 through
Edith Cowan University in
Perth, Australia.

He currently works as a
software developer for Wesfarmers Ltd while
studying towards a PhD in computer science at Edith
Cowan University. His particular focus is on system
dynamics and software engineering.

S. Paul Maj is a senior
academic at the School of
Computer and Information
Science, Edith Cowan
University, Perth, Australia,
and also Adjunct Professor
at the Department of Infor-
mation Systems and Opera-
tions Management, Univer-
sity of North Carolina
(Greensboro) in the USA.

He was previously Adjunct Professor in Computer
Control Systems at the Technical University of
Denmark. He is an internationally recognised author-
ity in laboratory automation and has published a
commissioned book in this field.

