
35

© 2005 UICEEGlobal J. of Engng. Educ., Vol.9, No.1
Published in Australia

INTRODUCTION

Physical simulations using Java applets can be a use-
ful didactic tool that has already been proven by many
applications (eg [1][2]). Unfortunately, the construc-
tion of such applets is a huge programming effort and
needs a profound knowledge of the Java program-
ming language and its libraries. For this reason, large
lists of applets have been collected on the Internet;
these can be used freely (eg [3]). However, every
lecturer has his/her own way of explaining things and
different points to make, which lead to a large number
of similar applets that have all been created from
scratch.

A way out of this dilemma are physlets, which are
a set of general purpose applets that each span a certain
physics topic [4]. They can be configured using
JavaScript to such a wide degree that very different-
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looking applications can be constructed from one
basic applet. But this freedom has its price: in addition
to JavaScript, one has to learn the special features of
the specific physlet.

The approach discussed in this article has a differ-
ent focus: The PhysBeans library contains a set of
building blocks that allow a physical simulation to be
constructed in a graphical way. Little (hopefully none)
explicit Java code is needed to create an individual
applet that exactly suits the needs of a lecturer. A
complete examplary applet will demonstrate what the
PhysBeans library provides and how it is used.

ELECTRICDIPOLE: AN EXAMPLE
APPLET

The applet that serves as an example is used in a basic
course on electromagnetic fields for engineers. It
shows the electric field of two opposite point charges.
The electric field is displayed by a grid of arrows, its
absolute value is represented using a colour table. The
value of the charges and their separation can be
changed with sliders or by direct numerical input. This
gives a clear intuitive understanding of the qualitative
properties of the dipole field (see Figure 1).
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Next, students have to identify the quantitave
behaviour in the far and near field regimes. For this
purpose, the applet allows to measure the electric field
strength at an arbitrary point by simply clicking there.
Furthermore, the absolute value of the field strength
along arbitrary horizontal or vertical cut lines is
displayed as simple graphs. This permits the use of
the applet as a virtual experiment, as referred to in
refs [5][2].

The programming of such an applet entails a great
deal of work; altogether it uses 47 classes (plus many
Java standard classes) consisting of 5,049 (non-empty)
lines of code, only a minor part of which (13%) is
connected with the physical equations or basic math-
ematics. The rest is mainly used for the user interface
and the graphical representation of the data and for
general infrastructure purposes such as coordinate
transformations, colour tables or message passing
facilities. Almost all of the classes can be (and
actually are) reused in other applets. The applet
specific part (the main program) only makes up 6%
of the code. This clearly shows the large potential for
a classical class library to considerably simplify the
task of an applet programmer [6]. Yet this can be made
even simpler by utilising a graphical approach.

GRAPHICAL PROGRAMMING WITH
JAVABEANS

Programming infrastructures like Visual Basic or
JavaBeans try to reduce the programming task as
much as possible to simple graphical operations [7][8].
They are especially helpful for the implementation of
graphical user interfaces, but can also be used in a
much broader sense. For instance, writing a program
in a JavaBeans environment is reduced mainly to the
following steps:

Figure 1: An applet of an electric dipole.

• Select the needed components (the Java beans
proper) from a palette of predefined beans;

• Configure the beans by entering all non-default
values for their properties in a property sheet;

• Connect the beans with lines that denote
messages going from one bean to another, and
define the message content.

Beans have a built-in mechanism to send messages
to a list of receivers whenever their state changes or
an external (eg user-initiated) event occurs. Different
programming environments provide various means
allow messages to be defined without writing any
explicit code. Nevertheless, it is often necessary, and
sometimes even simpler, to write some Java lines by
hand. The following example illustrates how to work
with JavaBeans using the free Netbeans environment
[9]. It shows clearly what can be done graphically
and where hand code still is necessary (see Figure 2).

The example program is a simple calculator
with two input fields to enter numbers, four
buttons with the basic arithmetic operations and an
output field displaying the result. The construction
of the program proceeds with the following steps:
start by using a simple template for applets. An empty
grey rectangle is shown to represent the  graphical
user interface.

Next, add the necessary components from the
palette by selecting them and clicking in the rectangle,
namely three text fields, three labels, four buttons and
five panels, simple containers used for nice grouping
of the elements.

The components can now be configured by
providing values for all properties that are different
from their defaults. This is carried out by simply edit-
ing the values in the property sheets. The changed
properties cover the following:

Figure 2: Programming environment NetBeans.
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• Layout types, border sizes, etc, to arrange every-
thing nicely;

• Text and font of the labels;
• Size, font and initial text (none) of the text fields;
• Text and font of the buttons.

This completes the user interface displayed in a
WYSIWYG style in the NetBeans window.

Finally, behaviour is added by drawing connections
and defining the proper messages. Four connections
are needed here, one from each button to the output
field. The message should say basically: When I [the
button] am pressed, you [the output field] have to
get the numbers from the two input fields, add
[subtract, etc] them and display the result.

This message is a bit too complicated to create it
graphically, although this would be possible by inserting
an intermediate bean for addition. To see what is
possible without any hand-coding, the following
simpler message is inserted: When I [the button] am
pressed, you [the output field] have to get the number
from the first input field and display it.

After clicking the sender (button) and receiver (out-
put field) with the connection tool, the connection
wizard pops up and asks for the following information,
which can be entered simply by selecting from a list
of predefined values, namely:

• Reason of the message (button is pressed);
• Property to change at the receiver (text);
• Origin of text (text property of first text field).

This creates all the code needed for the message
transfer as guarded code (ie it cannot be changed
manually) and the message content itself:

jTextField3.setText(jTextField1.getText());

Now the original message can be implemented
easily by replacing the code with the following lines:

double val1 = Double.parseDouble(jTextField1.getText());
double val2 = Double.parseDouble(jTextField2.getText());
double result = val1 + val2;
jTextField3.setText(result + “”);

The applet is finished by proceeding in the same
way with the other three connections. The complete
program consists of 139 non-empty lines, of which 16
have been hand-coded.

COMPONENTS OF THE PHYSBEANS
LIBRARY

The use of this graphical programming style is only
possible if all the necessary beans exist. Standard
environments usually contain beans from Sun’s Swing

library, which serve as basic building blocks for a
graphical user interface [10]. To  construct physical
simulations, one needs more sophisticated input
and output elements, plus many  non-graphical
components. This is where the PhysBeans library
comes in.

The aim of the PhysBeans project is to provide a
set of beans that make possible a graphical construction
of physical simulation applets. Its components fall into
five categories, namely:

• Input beans allow the input of information by the
user. They are displayed graphically, usually in a
special input panel, eg TextSlider, Timer.

• Output beans display the results of measurements
or show views of physical objects, eg Oscillo-
scope, VectorTextField, LayeredScreen.

• Physical beans describe physical objects and their
behaviour using specific physical laws. They do
not contain any graphical representations,
eg ElectrostaticPointCharges, MathPendulum.

• View beans define a specific graphical represen-
tation. Often they are the interface between a
physical object and an output element, usually the
LayeredScreen, eg ImagePainter, VectorPainter,
FunctionPainter.

• Function beans represent mathematical functions.
They usually have one or more inputs (arguments)
and an output sending the result. They are not
displayed graphically, eg FFTFunction,
CutFunction.

The task of arranging all elements efficiently needs
a good understanding of the Java layout mechanism.
So as to free the programmer from this burden, the
library additionally contains three applet templates with
different predefined arrangements of panels for input
and output elements and for the visualisation of the
physical objects.

The beans that are described in more detail below
offer a good overview of the kind of components that
the PhysBeans library provides. Furthermore, they are
the building blocks of the two applets described.

Input beans include the following:

• TextSlider allows the entry of a numerical value
using a slider or a text field. Some of its proper-
ties are a description and a unit text, the number
of significant digits to use for the value and the
type of its slider (logarithmic, inverted). It sends
a message when a new value is entered.

• SwitchBox is a collection of options that can
be selected independently. It facilitates a nice
arrangement and sends a message whenever a
box is clicked.
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• Timer is a bean that sends regular events to drive
dynamical simulations or animations. Its user in-
terface allows the animation speed to be changed,
paused or continued, as well for the animation to
be restarted.

Output beans cover the following:

• VectorTextField displays a complete vector of
numerical values, each in its own text field. It
provides description and unit texts and some
layout options.

• LayeredScreen is a screen with several layers,
each of which is attached to a different view.
Views are drawn in fixed order and can be
disabled individually. The LayeredScreen defines
a common world coordinate system for all its
views, cares for the transformation between
screen and world coordinates and has an option
to display a crosshair cursor. It listens to mouse
clicks and sends messages with the corresponding
world coordinates.

• Oscilloscope shows a number of curves as
animated functions of time. It allows the curves
to be scaled and to make measurements by click-
ing on the oscilloscope screen.

Physical beans incorporate the following:

• ElectrostaticPointCharges is a model of a set
of static electric point charges in two dimensions.
It computes the electric field strength as a vector
field and the absolute value and the potential as
scalar fields. The number of charges, their value
and their positions, can be configured. For
convenience, it provides common scale factors
for charges and position vectors. It sends a
message to notify of general changes and can be
asked to send a message with the field strength
at a given point.

• MathPendulum describes the motion of a
mathematical pendulum by solving its differential
equation. The mass, length, gravity acceleration
and friction coefficient can be set. Also, it can be
connected to an external function that provides
arbitrary time-dependent values for a driving
torque.

View beans involve the following:

• ImagePainter draws a colour image that repre-
sents a scalar field by using a colour table to map
scalar values to colours. The standard map
defines a cold-hot feeling going from blue over
white to red.

• VectorPainter draws arrows at regular grid points
representing a vector field. If the length of an
arrow is larger than a given limit, the arrow is
hidden or a marker may be drawn instead.

• FunctionPainter draws a vector of two-dimen-
sional points by connecting them with lines of a
given colour. It is commonly used to create
function graphs.

• SimpleFigurePainter adds simple additional
features to an image like a few lines, a rectangle,
an oval or an arc (filled or unfilled), or a string. It
is a graphical Swiss army knife for all the
little things to add. Its properties contain the
type of figure, the points defining it and its
colour.

• PendulumView displays a pendulum as a circle
attached to a line. An option is the drawing of an
arrow of varying length connected to the circle,
thereby representing an external force.

Function beans include the following:

• GainFunction multiplies its input with a fixed
number.

• BooleanSelector creates an output vector of
logical variables by selecting some of its input
values and reordering them.

• ReduceAngleFunction subtracts multiples of 2π
from the input value, until the result lies in the
basic interval [-π,π]. The function can be
switched off, upon which it simply passes its
input value to the output.

• CutFunction is a specialised function that
computes a number of field values of a given
scalar field along a horizontal or vertical cut line.
It outputs a vector of two-dimensional points,
each giving the coordinate along the line and
the corresponding field value. The position and
orientation of the line can be configured, as
well as the number of points to compute.

CONSTRUCTION OF AN APPLET

The development of a new applet (eg electric dipole)
starts with the following preliminary steps:

1. Didactical considerations: What are the basic ideas
to learn from it? How can it be used?

2. Design of the user interface: What quantities can
be entered, what measurements can be done, what
is displayed? This fixes the input and output beans
and most of the view beans.

3. Internal function: Which beans are needed to make
everything work? Starting with the central physical
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beans, all necessary mathematical and auxiliary
function beans are added.

At the end of this stage, a flow chart is constructed
that shows all necessary beans and the message flow
between them (see Figure 3). The upper part shows
the ElectrostaticPointCharges bean, which defines the
two opposite charges, whose value and distance can
be set using TextSliders. The ImagePainter and
VectorPainter create the corresponding colour and
arrow images that are displayed on the upper
LayeredScreen. Additional elements here are the two
perpendicular cut lines, which are created with a
SimpleFigurePainter and whose positions are set with
TextSliders. A SwitchBox can be used to choose what
will be displayed on the screen.

The lower section of the flow chart contains two
CutFunctions that compute the values along the given
cut lines. They send their results to FunctionPainters,
which create the graphs that are displayed on the
second LayeredScreen. The values are recomputed
every time the x- and y-sliders send new values, or
when the physical model is changed. Again, a
SwitchBox is utilised to choose which graph to
show.

If the user clicks on the upper LayeredScreen, the
coordinates are displayed by a VectorTextField.
Furthermore, they are forwarded to the
ElectrostaticPointCharges bean, which in turn sends
the corresponding field values to another
VectorTextField.

The implementation now proceeds in the same way
as in the calculator example:

• Start with a standard template.
• Add all visible and invisible components by

selecting and clicking on the proper panel (these
can easily be rearranged later with drag and
drop).

• Configure all the beans by defining, for example,

Figure 3: Flow chart of an electric dipole applet.

the two charges with the opposite values, all the
description texts and the ranges of sliders and the
coordinates of the screens.

• Define messages for all connections in the flow
chart.

As mentioned above, the last step is the only one
that needs any explicit Java code. For example,
the message from the TextSlider y to the
SimpleFigurePainter CutLines cannot be done in a
graphical way directly, because the slider sends a sim-
ple number (a double), while the SimpleFigurePainter
needs two points to define the vertical line. Such a
conflict can be resolved manually with the following
lines:

double val = textSlider3.getValue();
simpleFigurePainter1.setP3(new DVector(-1.0, val));
simpleFigurePainter1.setP4(new DVector(1.0, val));

If one wants to avoid any hand-coding completely,
a simple function bean could be used as an interface,
which creates a two-dimensional vector from a
number by getting the second coordinate as a fixed
parameter.

The complete applet program consists of 277
non-empty lines, of which 21 lines are used to define
message contents. Out of these, only seven lines are
created manually, but this could be made to zero with
little additional effort.

MATHPENDULUM: A DYNAMICAL
APPLET

The second applet example simulates the motion of a
swinging pendulum and is used in a course on non-
linear and chaotic systems. Since its flow chart is sim-
pler, it is better suited to show explicitly how one can
handle the interface problems discussed above. How-
ever, its simplicity is superficial; the true complexity
needed for the differential equation solver is hidden in
the MathPendulum bean.

The applet shows directly the motion of the
pendulum as a simple animation, the angle and
angular velocity are displayed as functions of time on
an oscilloscope (see Figure 4).

The user of the applet can pause, continue or reset
the timer and change the animation speed over a wide
range. The user can also set the initial values and the
physical parameter g/l, as well as utilise the oscillo-
scope measurements by clicking on a curve. One can
also select the curves that should be displayed and
scale them to adapt to different ranges of the
functions. In addition, the angle can be reduced to the
interval [-π,π], which leads to a better representation
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of an overswinging motion.
Most of the necessary beans for this applet

correspond directly to the components of the user
interface. To make everything work, three more beans
have to be added, namely:

• The MathPendulum bean is the central bean
as it contains all the information about
the physical system, such as the mass and
length of the pendulum, as well as its time
behaviour.

• The PendulumView contains the optical infor-
mation of the system. Given the angle, it draws a
simple pendulum.

• The ReduceAngleFunction optionally reduces
large angles to a fundamental period.

The flow chart in Figure 5 displays all the neces-
sary beans and their connections.

The Timer periodically sends messages with the
next time value to the MathPendulum bean. This
computes the corresponding new state (angle ϕ and
angular velocity ω) and sends it to the PendulumView
and the ReducedAngleFunction. The PendulumView
draws an animated image of the pendulum using the
LayeredScreen. The ReducedAngleFunction passes
its values to the Oscilloscope, which may be changed
according to the state of the SwitchBox1.

This simple description conceals some problems
that are typical for many applets, namely:

• The range of the TextSlider setting the initial
angle is [-1,1]; its unit (which is just a text string)
is π. This makes the entered number more

intuitive, but creates an interface problem between
the TextSlider output and the MathPendulum
input.

• The ReduceAngleFunction operates on a vector,
which contains two values: (ϕ, ω). Therefore, its
internal switch variable also is a two-dimensional
vector. However, the SwitchBox only has one
option for the angle as its output vector is
one-dimensional. The other switch should, of
course, always be set to false, since it is
meaningless to reduce the value of the angular
velocity.

• The output of MathPendulum is 2d: (ϕ, ω). The
input of PendulumView is 2d as well, but it is
(ϕ, M), where M is an optional external torque,
which is represented by an arrow.

One can easily cope with these interface problems
by manually modifying the message code, eg by using
bean methods that give direct access to its variables
individually or by explicitly creating the necessary
vectors. The problems in the example can thus be
solved with the following lines:

1. mathPendulum1.setPhi0(textSlider1.getValue()*Math.PI);
2. reduceAngleFunction1.setProcessed(0,switchBox2.

getSelected(0));
3. pendulumView1.se tAngle( (mathPendulum1.

getOutputValues(0));

If one wants to adhere to graphical methods,
then one has to include the following interface
beans:

Figure 4: An applet mathematical pendulum.

Figure 5: Flow chart of the mathematical pendulum applet.
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• The necessary multiplication with π can be
achieved by the GainFunction bean, which
simply multiplies its input with a fixed number.

• The BooleanSelector bean allows the input
and output vector dimensions to be defined
differently. Any input variable can be routed
to one (or more) output variables; the remaining
output switches can be set to a constant
value.

• One could add a similar Selector bean for the
third problem as well, but a special feature
of the PendulumView makes it possible to
use the following trick: since the vectors have
the same size, one can directly connect
MathPendulum and PendulumView. One
can then set the showArrow  property of
PendulumView to false so that the second input
is simply ignored.

These additions are represented in the final flow
chart (see Figure 6).

CONCLUSIONS

The above examples show that the concepts of
JavaBeans, together with a proper set of components
like PhysBeans, make it possible to create non-trivial
applets of high didactic value, almost without any
explicit programming.

The notion of reusable blocks is especially suited
for general controls and displays but can also be
applied to create all necessary internal parts of a
virtual experiment. To dispense from the need of

writing Java code at all, one has to further address the
following points:

• The need of interfacing between different blocks
can be reduced to a minimum by the overall
design of the kind of messages and by adding a
few simple arithmetic blocks.

• The number of custom blocks needed in special
situations can be reduced by providing general-
purpose blocks, which can be configured widely.

• Some of the messages could be easily created
graphically with better support from the program-
ming environment. An open source program, such
as NetBeans, is probably a good starting point for
the necessary extensions.

The PhysBeans library has been used for the applets
on the supplemental CD-ROM of ref. [11] and for a
course on non-linear and chaotic systems. It is the
basis of a forthcoming multimedia-enhanced course
on vibration theory. Existing applets are mainly from
linear and non-linear oscillations, but applets for
electrodynamics, optics, thermodynamics and nuclear
physics prove its wide applicability. They all can
be downloaded from the author’s PhysBeans
homepage [12].

Future developments will concentrate mainly on two
points, namely: building of new beans (eg with 3d
graphics) and new applets; and the redesign of the
underlying code to make use of the recent
OpenSourcePhysics library, which contains many
tutorials that help to create new beans [6].

The PhysBeans project is still at an early stage.
The library and all the applets have been released as
open source so as to make it more useful and to
proceed faster. It could be a starting point to make
physics educators, who want to use applets, more
productive by largely simplifying the programming
tasks, so that one can concentrate on the design
of didactically useful and easily adaptable physical
simulation programs.
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