
27

© 2005 UICEEGlobal J. of Engng. Educ., Vol.9, No.1
Published in Australia

INTRODUCTION

The value of mathematics is controversial, although
its achievements and potencies are huge. The bad
image of mathematics in public, and the lacking
motivation of many young people to acquire a good
level of knowledge in this science, will generate, sooner
or later, a very critical situation in education if no
re-evaluation is forthcoming.

The Gottlob Frege Centre for Engineering
Science and Design (GFC), which is based at
Hochschule Wismar - University of Technology,
Business and Design (HSW), Wismar, Germany,
has acted since its foundation in 2000 to propagate
mathematics as a key qualification in engineering edu-
cation and to increase its starting level at universities

Challenges in Computer Mathematics in
Engineering Education*

Dieter Schott
Hochschule Wismar – University of Technology, Business and Design

Phillipp-Müller-Straße 14, D-23966 Wismar, Germany

Identifying the position that mathematical software systems, with their components (numerical and
symbolic computation, graphic representation and experimentation), should hold in the education of
engineering students is discussed in this article. Its convincing advantages are more sophisticated
and practically significant examples, a release from trivial calculations and transformations, and the
possibilities for experiments and the inclusion of computer science parts. However, there are also
some risks, such as neglecting mathematical knowledge, blind confidence in computer outputs,
missing the feel for the correctness or misinterpretation of computer results and the inability to
interactively interfere in the case of unsatisfactory results. The case of selecting MATLAB used to
illustrate typical examples is presented and discussed in this article. The dilemma is that although
the mathematical knowledge of many beginner students nowadays is significantly sub-standard, the
reasonable integration of mathematical software systems in the general concept of engineering
education demands a solid knowledge of mathematical basics. Therefore, modern mathematics in
engineering education has to include computer mathematics, but need not be reduced to it. Identifying the
right composition of both parts is crucial; indeed, meeting the optimum level is an art.

*A revised and expanded version of a lead paper presented
at the 8th Baltic Region Seminar on Engineering Educa-
tion, held in Kaunas, Lithuania, from 2 to 4 September 2004.
This paper was awarded the UICEE diamond award (joint
first grade with one other paper) by popular vote of Seminar
participants for the most significant contribution to the
field of engineering education.

[1-3]. It should be noted that the GFC is also a
satellite centre of the UNESCO International Centre
for Engineering Education (UICEE), which is located
at Monash University, Melbourne, Australia.

Present public activities are being developed as a
response to depressing international comparative
studies, such as TIMMS or PISA [4]. Such activities
react in steadily changing chaotic small steps within
the framework of party interests. Each regional
minister in Germany is hunting for a new cow, further
destabilising the structure and increasing the
uncertainty of the educational landscape. Hence, the
GFC’s contribution to bringing up-to-date training in
mathematics is weakened by these conditions.

Undoubtedly, the discussion about the value of
computer mathematics in education is being strongly
influenced by the role of given mathematics in society.
Conservative thinkers hate the use of computers
in mathematical training, arguing that classical
mathematical techniques would be neglected. Yet pseudo-
modern pragmatic thinkers love it because the soft-
ware does the work and the user seems to need no
mathematical skills at all. Both are not right.

D. Schott28

MATHEMATICS AND SOFTWARE TOOLS

It is interesting to study the role of tools in mathematics.
New mathematical tools influence the methodol-
ogy and the contents of mathematical training.
Previously, engineers used known mathematical
theories to solve their sophisticated problems.
Therefore, they had to absolve hard mathematical
training.

Nevertheless, such tools, like slide rules or pocket
calculators were used to reduce mechanical
headwork. Each time, there were discussions whether
these tools were helpful for mathematical training or
not. But new technologies, which increased the
computation power and reduced boring mechanical
work, have always succeeded. Responsible training
should be orientated to hold corresponding compu-
tation skills principally present but to transfer them
to mathematical tools for efficiency. Consequently
in mathematical training, understanding the princi-
ple of a method becomes more important than
corresponding calculation and transformation
skills. Yet tools also influence the solution methods
utilised. As such, it is natural to treat mainly the
principles of methods applied in computers on a
reasonable level.

New mathematical tools offer new perspectives,
but also new risks. It is fascinating to see which
results can be reached by mathematical computer soft-
ware. But, who ensures that the results are correct?
Namely, there are many sources of error (eg input
errors, model errors, approximation errors, rounding
errors, error propagation, misinterpretation of results,
etc).

If strong mathematical tools are utilised in
engineering practice without a principal understanding of
computation processes and without any verification
of the results, the consequences can be tragic. In each
case, it is important that the user of tools is able to
estimate or test whether the results correspond to the
general experiences or lie within the limits known
from the theory. So as to avoid or to find errors, it is
advisable to also check each step.

For example, when calculating any probability, the
value has to be in the interval [0,1]. When calculating
the value of a well-known function (eg sine or expo-
nential), it has to lie in the well-known range of the
specific function.

Another example may involve having to determine
the height of a tower in physics using freefalling
bodies. Then one can imagine the real height. Should
the difference between the expected and the
calculated height be too great, then one has to check
if something is wrong.

Yet another example is when there are ill-posed
problems and solution methods that are unstable
under certain conditions. These phenomena can cause
useless results. If a non-standard problem is solved
by computer software, the user should check if
such dangerous effects could also occur. At minimum,
the result should be verified via experiments or other
means.

Nowadays, there are powerful software tools that
have only to be fed with the physical description of a
model before providing the solution in a short space of
time, including colourful graphical representations.
Greenhorns then become very enthusiastic because
mathematics will not stress their great mood. Moreover,
since the performance of such tools is fantastic and
will increase further and further, the solution of scien-
tific problems seems to be very easy. The successful
blind application of these tools in various standard
situations will strengthen such perceptions without
affecting the dangerous illusion. Sometimes, there is a
painful awakening. There are horrible scenarios that
have already become reality: buildings can collapse
by errors in static computations, machines can explode
by the use of unstable numerical methods for design,
and people can die as a consequence. In such cases,
first-class examining commissions should be appointed
and famous lawyers then enter the scene to work for
years, thereby consuming a lot of money. Press
campaigns may then be started to determine the
reasons for the faults. Finally, someone has to take
the blame. However, the author remains sceptical if
there would be much interest in demanding improve-
ments in mathematical education in order to reduce
the risks generated by the ill use of mathematical soft-
ware and to save money and people’s lives.

Software tools are black boxes for the user that
contain complicated expert systems. One can start
with mathematical models that are solved by profes-
sional, analytical or mostly numerical methods. Thus,
it is hidden that the kernels of these software systems
consist of high performance mathematics. However,
there are no perfect systems; there are no universal
solution methods. The limits of such methods have to
be known because, in certain situations, they can fail.
In the case of numerical methods, error propagation
can generate totally false results. Furthermore, the
software realisation may have some weaknesses
because software products become increasingly
complex and there is considerable competitive time
pressure to release the software as early as possible
to the international market.

Most developed software tools start with physical
models that are internally transformed into mathematical
models. Therefore, the user has to know something

Challenges in Computer Mathematics... 29

about the mathematical and physical backgrounds
in order to avoid mistakes or even catastrophes. In
critical cases, results have to be verified by
applying different solution methods and/or
practical experiments.

The conservative answer to the mentioned risks is
to go back to classical teaching and to ban computers
from mathematical teaching. Yet this is highly
counterproductive, since computer tools increase
performance immensely. Certain important practical
problems are only solvable with computers.

At some point in their careers, graduates will have
to work with mathematical software and will need to
acquire skills in their use and learn a reasonable rela-
tion to this tool. Nobody assumes that the number of
hours for mathematical training will essentially
increase, since demands in other subjects grow and
new subjects, like business and social skills, also
occur. Therefore, the time for the training of compu-
tational skills has to be reduced in order to gain time
to acquire qualitative knowledge. Mathematical
education has to consider the optimal mixture of
software mastery and mathematical background
knowledge [5-7]. An article by Schott contains some
instructive examples to illustrate the statements [7].

SOLUTION OF LINEAR EQUATION
SYSTEMS

Let us start with linear systems of equations in order
to explain some challenges concerning the use of
mathematical software. This equation type occurs
again and again in mathematics and in practical
applications [5][8]. One example is also mentioned in
the next section [8]. Key facts should be known when
solving such a system of m linear equations with n
unknowns, in matrix-vector-notation written as A x = b.
These facts are as follows:

• The system may have no solution, a unique
solution or infinitely many solutions (described by
using a number of parameters according to the
rank deficiency n – rank A).

• In the classical case, there are as many unknowns
as equations that are linearly independent
(m = n and det A ≠ 0); this leads to a unique
solution.

• The general solution of a consistent system
A x = b is composed by a special solution and a
linear combination of (linearly independent) basic
solutions of the corresponding homogeneous
system, A x = 0.

• Generalised solutions exist for an inconsistent sys-
tem (in the sense of least-squares-approximations).

They coincide with the common solutions for a
consistent system.

• The least-squares-solutions of the system are the
solutions of a transformed consistent linear
system (system of Gaussian normal equations);
therefore, the structure of these pseudo-solutions
is the same as stated before.

• Errors arising from measurements, models or
numerical computations on a computer can
distort the results or the structure of the linear
system. This is to be considered especially if the
system is ill-posed. Then regularisation
techniques replacing the system by a well-posed
neighbouring system are used to reduce the
errors.

Some concepts and theory are necessary for a
correct solution. The theory is quite simple compared
with the theory of non-linear systems of equations.
Nevertheless, students often have trouble remembering
mathematical facts. They have also trouble solving
systems matrices greater than 3 x 3 without computers,
producing false results as a consequence of mistakes
or ignoring the solution structure in the case of
infinitely many solutions. So a computer system can
be very helpful. However, the following example
shows that there can occur other difficulties.

Example: Solve Ax = b, where

14 4 10 6 1

4 5 5 6 1
, .

10 5 11 4 1

6 6 4 10 1

A b

− −
 − − = = − −
 − −

The numerical computer solution is detailed below.
The following signs and structure are used to record
computer calculations:

>> user input % user comments
 computer output

The standard solution method (Gaussian
algorithm with column pivot strategy to reduce
numerical errors) is as follows:

>> x1 = A \ b % backslash as left division by A
 x1 = 1.0e+015* % huge pre-factor 1015

 –0.9007 % vector coordinates
 2.2518
 1.3511
 –1.3511

Although there is no computer warning, the huge
pre-factor should lead to a critical check.

The inversion solution method using the explicit

D. Schott30

representation x = A-1 b , including the matrix
inverse A-1 (computed by Gaussian algorithm) is as
follows:

>> x2 = inv(A) * b % inv(A) means the inverse of A
 x2 = 1.0e+015 * % huge pre-factor 1015

 –0.9007 % vector coordinates
 2.2518
 1.3511
 –1.3511

There seems to be no difference to the standard
solution method. The separate computation of the
inverse supplies a further hint to doubt the correct-
ness of the result:

>> IA = inv(A)

Warning: the matrix is close to singular or badly
scaled. The results may be inaccurate.
RCOND = 4.168547e-018.

1.0 015*

0.6005 1.5012 0.9007 0.9007

1.5012 3.7530 2.2518 2.2518

0.9007 2.2518 1.3511 1.3511

0.9007 2.2518 1.3511 1.3511

IA e= +
− −

− −
− −

− −

The extremely small number RCOND shows that
the problem is ill-posed. The rule of Cramer states
that the solution of the linear system can be expressed
with a matrix determinant in the denominator. Hence,
it can be guessed that the huge numbers are caused
by a determinant value that is nearly zero. The check
essentially confirms the guess:

>> DA = det(A) % determinant of A
 DA = 0

It should be noted that this is in numerical mode.
Thus, the result means that the determinant is zero or
nearly zero. However, only in the second case is there
a unique solution. There are further possibilities to check
the result, namely:

• Measuring the equation defect of the results
(in Euclidean norm) which has to be zero for a
solution:

>> d1 = norm(A*x1−b)
 d1 = 3.4641

>> d2 = norm(A*x2−b)
 d2 = 2

There are two findings. First, the great differences
from zero show that the results are useless.

Second, although the output form of both results
is the same, there should be slight differences
caused by the use of different numerical compu-
tation methods.

• Rank investigations which can also be done
before computation of a solution:

>> rA =rank(A)
 rA = 3

>> rAb = rank([A b])
 rAb = 4

The different ranks show that there is no
solution. The difference n – rank A = 4 – 3 = 1
means that we have a one-parametric general
least-squares-solution.

The pseudo-inversion solution method generates
the special pseudo-solution x = A+ b , where A+ is the
pseudo-inverse of A. Further, the null space N(A) of
A containing the solutions of the homogeneous
system has to be determined in order to obtain the
general least-squares-solution. The procedure is as
follows:

>> xs = pinv(A) * b % pseudo-solution of minimal norm
 xs =

0.1419
 0.1174
 0.0545
 0.1556

>> NA = null(A) % special null space basis
 NA =

 –0.2917
 0.7293
 0.4376
 –0.4376

The least-squares-solutions manifold is now:

0.1419 0.2917

0.1174 0.7293
.

0.0545 0.4376

0.1556 0.4376

x λ

−

 = +
 −

The parameter is denoted here by λ. The pseudo-
solutions produce the minimal defect in the linear
system of equations in the least-squares-sense.
Geometrically, the defect vectors then have the
shortest length. The following is obtained:

>> ds = norm(A*xs−b)
 ds = 0.4376

Hence, the defect norm here is quite smaller than
in the case of the useless results given before.

Challenges in Computer Mathematics... 31

IMAGE RECONSTRUCTION

If a planar body slide is penetrated by X-rays, the
radiation intensity I is weakened depending on the
local densities of the body material. Since the
densities correspond to the body structure, this
process can be utilised to detect this structure by
intensity measurements. This method is often called
image reconstruction, or for human bodies,
computer tomography. Following the physical law
of weakening under some simplifying assumptions, we
obtain a linear integral equation of the form:

() () ,
L

f x dx g L=∫

where the straight lines L are the paths of X-rays, the
function f(x) is the unknown density of the slide in the
points x and the function g(L) is obtained from the
intensities of the rays before and after penetrating the
slide. If a square region Q containing the slide is
divided in such a way into n small squares (pixels) Q

j

that the densities in Q
j
 can be supposed to be

constant, then for a sample of m rays L
i
 the following

system of linear equations arises:

1

(1,...,) ,
n

ij j i
j

a f g i m
=

⋅ = =∑

where:

() , () (), ()ij i j j j i ia l L Q f x f x Q g g L= ∩ = ∈ =

are the intersection length of the straight lines L
i
 in the

squares Q
j
, the unknown density values and the

intensity functions, respectively. This system of m
equations with n unknowns can be consistent or
inconsistent, depending on the ray geometry and the
pixel division. Also, the system is often ill-posed. So
the whole theory mentioned in the preceding section
is necessary in order to obtain discrete solutions f

j
.

By interpolation, continuous or even smooth solution
functions f(x) can be generated. It is a true challenge
for students to develop a complex MATLAB software
package realising the reconstruction of objects in a
satisfactory way.

Image reconstruction is an exciting example to
demonstrate the mathematical solution of practical
problems [8]. The mathematical model is derived
(linear integral equation) starting from the physical model.
The continuous model is approximated by a discrete model
(system of linear equations) in order to solve the problem
numerically on a computer. Some known solution
methods can be tested so as to choose the best.

The reconstruction f(x) can be visualised by a
surface in the space or by a planar level plot. Given
phantom objects can be used to study the quality of

reconstruction. For unknown objects, the verification
procedure will include error analysis and the check of
being consistent with known facts and theory.

THE PENDULUM PROBLEM

A further interesting and simple problem, relevant to
engineering education, is the motion of a pendulum.
Starting with a physical model, the student arrives at a
simple mathematical model, assuming that the mass
of the pendulum is concentrated in a point at the end
of an infinitely thin thread.

In this example, the motion of a (mathematical)
pendulum satisfies approximately the model:

0 0() sin () 0, (0) , (0)t c tϕ ϕ ϕ ϕ ϕ ϕ′′ ′ ′+ = = =

(with given 0ϕ and 0ϕ ′) if the air resistance (friction)
is neglected. Here ()tϕ is the angle swing at
the moment t, with c being a constant depending
on the Earth’s acceleration g and the length l of the
pendulum.

It is important to understand the following:

• The model is a differential equation of second
order complemented by two initial conditions
(a so-called initial-value-problem).

• The differential equation is non-linear, caused
by the non-linear sine function applied to ()tϕ .
However, the equation can be considered to be
linear if there are only small swings of the pendu-
lum (sinϕ ϕ≈ if ϕ is small).

• In the linear case, the solution can be given
exactly. It is a periodic trigonometric function. In
the non-linear case, numerical methods deliver
approximate solutions.

• The two initial conditions are necessary in order
to make the solution unique.

Naive discretisation of the problem using times
t

i
 (i=0,...,n) with initial time t

0
 = 0, small constant time

steps h > 0 and first and second order difference
quotients, instead of first and second order differen-
tial quotients, leads to a simple non-linear system of
equations that can be solved by forward substitution
of the stepwise calculated discrete unknown angle
swings denoted by Φ

i
 ≈ ϕ(t

i
) (i=0,...,n):

0 0 1 0 0

2
1 1

, ,

2 sin (1,..., 1).i i i i

h

ch i n

ϕ ϕ

+ −

′Φ = Φ = Φ +

Φ = Φ − Φ − Φ = −

The result yields discrete points (t
i
, Φ

i
) that can be

interpolated by a continuous function Φ(t) ≈ ϕ(t) in
the interval [0,nh].

It is easy to produce a MATLAB file that

D. Schott32

calculates and visualises the approximate swing curve
of the pendulum. Experiments show that the solution
of the given pendulum model is described accurately
enough only if the time step h is sufficiently small com-
pared with the length l of the pendulum. But choosing h
too small will increase the errors again by numerical
effects. This phenomenon is called semi-convergence.
Hence, a good choice of h needs to be identified.
Professional software will use combined methods of
a Runge-Kutta type with variable time step control.
In MATLAB, the standard functions ODE23 or ODE45
can be utilised if the differential equation is described
in a corresponding file. But if the differential equation
problem is hard enough, these methods can also
produce useless results.

In some sense, the model for the pendulum is not
adequate. So the influence of friction (nearly propor-
tional to ()tϕ ′) and the impact of external forces f(t)
can be considered as follows:

0 0() () sin () (), (0) , (0) .t b t c t f tϕ ϕ ϕ ϕ ϕ ϕ ϕ′′ ′ ′ ′+ + = = =

With small changes, the MATLAB files can be used
again in order to solve the problem. It is easy to
produce instructive graphical representations in
MATLAB.

INFINITE SERIES

So far, numerical calculations have been used. It
is now shown that symbolic calculations can also
produce some difficulties. This is illustrated in the case
of infinite series, as follows:

0 1
0

... ...k n
k

a a a a
∞

=

= + + + +∑

• The series can be given the finite value a if the
sequence s

n
 of partial sums is convergent to a:

0

lim | | 0, .
n

n n k
n

k

s a s a
→∞ =

− = =∑

This series is called convergent.
• If the partial sums increase or decrease beyond

all limits, the series will get the value +∞ and −∞ ,
respectively. Such a series is called definitely
divergent.

• Otherwise, the series is called indefinitely
divergent. But using a mean value method you
can give some of such series a generalised finite
value a if the mean values nt of the partial sums
converge to a:

1

0

1
lim | | 0, .

n

n n k
n

k

t a t s
n

−

→∞ =

− = = ∑

These series are said to be generalised
convergent.

By symbolic calculation we can obtain the follow-
ing results:

2

2
1 1 1

1 1 1
, , () .

6 n
k k k

n
k k k

π ζ
∞ ∞ ∞

= = =

= +∞ = =∑ ∑ ∑

The first series is the so-called harmonic series, which
is known to be definitely divergent. It should be noted
that this result cannot be obtained through numerical
computer calculations, which terminates with a finite
value in each case, depending on the computing accu-
racy. The third series supplies values of the famous
Riemann zeta-function. It is worth noticing that the
first two series are special cases of the third. The
comparison leads to the following:

2

(1) , (2) .
6

πζ ζ= +∞ =

The first result shows that the Riemann function
has at 1 a pole (point of infinity). These results are
obtained through the following commands:

>> syms k n; % symbolic variables
>> s1 = symsum(1/k,1,inf) % symbolic sum
 s1 = inf % inf means infinity
>> s2 = symsum(1/k^2,1,inf)
 s2 = 1/6*pi^2
>> s3 = symsum(1/k^n,k,1,inf)
 s3 = zeta(n) % Riemann zeta-function

For the first two sums, the running variable k need
not to be indicated separately in the commands after
the expression of members because there is no
danger of misunderstanding. However, for the third
sum, there are two variables, k and n. Therefore, the
command contains the specification of k as a running
variable. If this specification is ignored, an error
message could be expected. But, surprisingly, the
following result is given:

>> s4 = symsum(1/k^n,1,inf)
 s4 = 1/k-1)

A user with some basic knowledge will then
recognise that this is the value of the convergent
geometric series:

2 3 4
1 1

1 1 1 1 1 1
... (2,3,...).

n

n
n n

k
k kk k k k

∞ ∞

= =

 = = + + + + =
∑ ∑

In the case of several variables, MATLAB chooses
the running variable by taking the variable name with
the highest order position in the alphabet. Nevertheless,
the question arises for which real k the result is true.

Challenges in Computer Mathematics... 33

The answer is | k | > 1, which follows on from the
theory but not from the expert system MATLAB.
Almost all members of the given geometric series are
greater than the members of the series:

1

1 1 1 1
1 ...

4 9 256k
k k

∞

=

= + + + +∑
It follows on from the theory that the latter series

has to be convergent. So the user hopes to obtain the
value from MATLAB. However, MATLAB returns the
input since it has no result:

>> s5 = symsum(1/k^k,1,inf)
 s5 = sum(1/(k^k), k = 1 .. inf)

Even the simple series below:

0

(1) 1 1 1 1 ...k

k

∞

=

− = − + − +∑
can cause some confusion. The series has no value
and is indefinitely divergent since the partial sums
alternate from 1 to 0. However, the series has the
generalised value ½, since the mean values of the
partial sums are:

2 2 1

1 1
, .

2 1 2n n

n
t t

n +
+= =
+

This sequence has the limit ½. Now, MATLAB is used:

>> s6 = symsum((-1)^i,0,inf)
 s6 = 1/2

Students usually know only elementary conver-
gence theory from the lectures or textbooks (without
generalised values and convergence). If they utilise
MATLAB, they will perhaps come into conflict regard-
ing whether to believe the professors or the MATLAB
experts. Students will probably see no conflict. If so,
they will take the MATLAB result as the value in the
classical, instead of the generalised, sense. If students
use the variable i instead of k in the foregoing MATLAB
commands concerning series, they will obtain partially
wrong results. The cause for this is that i is predefined
as an imaginary unit in the context of complex num-
bers. Hence, ignorance can be dangerous.

SUMMARY

The use of mathematical software increases the
demands upon teachers and students. The student
can make a lot of errors using computer software.
The software system involves a certain degree of
imperfection. Therefore, the user must be able to check
the results (or to delegate the check in critical cases
to experts). Computer mathematics needs both knowl-

edge of mathematical software systems (syntax and
semantics of problem language, potential of commands,
and dialogue management) and mathematical knowl-
edge (correctness and interpretation of results). This
is a dilemma because it has been observed that beginner
students suffer from a decrease in mathematical
competence plus severe deficiencies in elementary
mathematics [2][3]. This means that educators are
busied reducing deficiencies instead of teaching up-
to-date mathematical methods. The level in mathemat-
ics has been reduced. The gap between entry-level
students’ knowledge and the requisite level for higher
mathematics needed in other engineering disciplines
(electrical engineering, technical mechanics, mechanical
engineering, communication or automation engineering)
is becoming great. As a consequence, these subjects
are also developing to be a horror for students. The
alternative is to reduce mathematical demands in these
subjects, which leads to vocational training instead of
scientific education. This perspective is not desirable.
The following handicaps can be stated:

The theory, models and methods used in math-
ematical software are, for the most part, not (or
only superficially) treated, or else not understood
in the mathematical training of engineering stu-
dents at universities. Examples of this include Fourier
series, Fourier transformation, Eigen-value problems,
finite-element-methods (FEM), generalised functions
and variation principles. Some important physical
phenomena are not taught nowadays at universi-
ties because the mathematical basics are missing.

It is the author’s opinion that these conditions are
not tolerable.

CONCLUSIONS

The following conclusions have been reached:

• Mathematical training for engineers has to be
realised on a high level, combining suitable
mathematical theory and methods with the use of
mathematical software tools [5]. Changes of
contents and training in mathematics are necessary.
The student must know both the new perspec-
tives and the new risks of using mathematical
software tools.

• An offensive campaign is necessary to explain
the key position of mathematics for further devel-
opment [2].

• Education experts in the political field, the broad
public and students have to be informed about the
consequences of bad mathematical knowledge for
the future [3].

• The author has found that this previous step has

D. Schott34

to be complemented by resolute pressure to force
reasonable decisions.

• The motivation of students is becoming
increasingly important in order to achieve
educators’ aims.

REFERENCES

1. Grünwald, N. and Schott, D., Gottlob Frege
Centre for Engineering Science and Design
(GFC). Global J. of Engng. Educ., 8, 1, 53-64
(2004).

2. Grünwald, N., Kossow, A. and Schott, D., Math-
ematics – key-qualification in engineering educa-
tion. Proc. 3rd Annual Conf. on Engng. Educ.,
Hobart, Australia, 37-41 (2000).

3. Grünwald, N. and Schott, D., World Mathemati-
cal Year 2000: challenges in revolutionising math-
ematical teaching in engineering education under
complicated societal conditions. Global J. of
Engng. Educ., 4, 3, 235-243 (2000).

4. http://www.pisa.oecd.org
5. Schott, D., Ingenieurmathematik mit MATLAB,

Algebra und Analysis für Ingenieure. München:
Fachbuchverlag Leipzig im Carl Hanser Verlag
(2004).

6. http://www.et.hs-wismar.de/~schott/IngMat
7. Schott, D., Fluch und Segen der Computer-

mathematik, Global J. of Engng. Educ., 8, 3,
319-326 (2004).

8. Schott, D., Image reconstruction – an interesting
project for basic science education. Proc. 6th

Baltic Region Seminar on Engng. Educ.,
Wismar/Warnemünde, Germany, 13-17
(2002).

9. Schott, D., Challenges in computer mathematics
in engineering education. Proc. 8th Baltic Region
Seminar on Engng. Educ., Kaunas, Lithuania
(2004).

BIOGRAPHY

Dieter Schott is a Professor
of Numerical Mathematics
and Technical Mechanics in
the Department of Electrical
Engineering and Computer
Science at Hochschule
Wismar, University of Tech-
nology, Business and Design,
Wismar, Germany. He
graduated from the Univer-
sity of Rostock, Germany, as

a mathematician in 1972. He received there a Doctor-
ate in 1976 and the Habilitated Doctor’s degree in 1982
in the field of mathematics.

Later, Prof. Schott worked at the Universities of
Güstrow and Rostock, where he was engaged in the
education of scientists, teachers and engineers. His
numerous publications are mainly related to the field
of numerical analysis.

Prof. Schott is very interested in new teaching
methods within the field of mathematics, including
project work, computer mathematics and e-learning.

He has supervised foreign students in the design
of mathematical multimedia teaching units and project
studies. He is the author of a textbook concerning
engineering mathematics using MATLAB.

Prof. Schott is also a Co-Director of the Gottlob
Frege Centre for Engineering Science and Design,
a satellite centre of the UICEE.

Prof. Schott has also published widely as an
author in various UICEE journals and proceedings.
Further, he has acted as a referee for several UICEE
publications.

In February 2002, he received the UICEE Silver
Badge of Honour for distinguished contributions to
engineering education and outstanding achievements
in the globalisation of engineering education.

