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INTRODUCTION 
 
Basic physics and elementary structural analysis principles are 
used to develop a straightforward but powerful procedure to 
analyse static structures. The methodology is based on 
modelling structural members as springs and assembling these 
springs in a configuration that accurately represents the 
structural system; the overall effective stiffness of the structure 
can then be computed so that the overall drift (deflection) a 
structure experiences when subjected to applied static loads can 
be determined. This procedure, or some variant of it, is 
effectively presented in some structural dynamics texts (ie [1]), 
where computing the effective stiffness of a structure is 
required when modelling its dynamic response with a single or 
a few degrees of freedom. Further, the spring system can be 
methodically deconstructed to determine the internal forces in 
individual springs, which represent the internal forces in 
individual structural members.  
 
Unfortunately, this procedure is rarely used in elementary 
statics-based structural analysis or design courses or presented 
in textbooks (ie [2] and [3]) developed for these classes. As a 
result, students are less able to link fundamental mechanics 
concepts to the behaviour of complex structural systems. 
Moreover, they lack an effective means of checking structural 
calculations obtained from more traditional techniques. 
 
A reasonably complex building structure will be quickly and 
effectively analysed in this paper after reviewing the simple 
physics of a spring, developing an understanding of springs in 
parallel and series, presenting stiffness representations of 
common structural members, and exercising engineering 
judgement in constructing spring models. While the results are 
approximate due to connection and rigid member assumptions, 
they can be used to check traditional structural analysis 
calculations, assist in the design of structural members and/or 
structural systems, and verify finite element results. 

BASIC PHYSICS OF A SPRING 
 
Hooke’s Law 
 
The relation that describes how a linear elastic spring stretches 
or compresses due to a force is presented in basic physics  
texts and is known as Hooke’s Law; mathematically, it is given 
by: 
 

Δ= kF              (1) 
 
This is an equation of a straight line that passes through the 
origin of its load deflection plot, where F = a tensile or 
compressive force applied to the spring, k = the spring’s 
stiffness (or spring constant), and Δ = the deflection of the 
spring. F and Δ are both positive if the spring is subjected to a 
tensile force and both negative if it is subjected to a 
compressive force. Figure 1a shows an unloaded spring with 
stiffness k and length L0, while Figure 1b shows a spring under 
tension. 
 

 
 

(a) Unloaded spring 
 

 
 

(b) Spring under tension 
 

Figure 1: Springs before and after loading (1a-1b). 
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Figure 1b is the same spring subjected to a tensile force F, 
where the loaded length L1 is greater than the unloaded length 
L0 since Δ is positive when the spring is in tension. If the 
spring were to be loaded in compression, the loaded length L1 
would be less than the unloaded length L0. 
 
Relationship to a Simple Structure 
 
One of the simplest structural members that is not literally a 
spring itself is a hanger (a structure of this type is also often 
called a bar or strut) (see Figure 2). 
 

 
 

Figure 2: Hanger (bar) under load. 
 
If an axial force F is applied at the end of the hanger, the axial 
deflection of its tip Δ can be derived using undergraduate 
mechanics of material concepts, thus: 
 

EA

FL
=Δ    (2) 

 
where E = Young’s modulus of the material, A = cross 
sectional area of the bar and L = the original (unloaded) length 
of the bar. If, however, this equation is arranged to be of the 
form of Hooke’s equation: 
 

Δ=
L

EA
F    (3) 

 
the equivalent stiffness of the hanger is observed to be: 
 

L
EAkeq =    (4) 

 
The primary point here is that the hanger can be considered as 
a spring with equivalent stiffness keq = EA/L, a concept that is 
rarely taught to students for application in requisite structural 
analysis and design courses. 
 
CONCEPT OF A SPRING SYSTEM 
 
Obviously, it is of interest to model more complex structures 
than the simple hanger presented in the previous section. In 
order to do so, one must be able to represent a general 
structural system as an assemblage of springs in parallel and in 
series. Considering the form of Hooke’s equation, the 
equivalent stiffness of the entire system can be determined and 
subsequently used to compute the deflection of the global 
system (structure) in response to the applied forces. 
 
Springs in Parallel 
 
When an assemblage of springs is subjected to a force and all 
springs deflect by the same amount, the springs are said to be 
in parallel. Figure 3 indicates why the term parallel is given to 

these springs – all springs in the assemblage are arranged 
parallel to one another.  
 

 
 

Figure 3: n springs in parallel. 
 
The equivalent stiffness for n springs in parallel is obtained 
simply by adding together all the individual stiffnesses, thus: 
 

neq kkkk +++= K21    (5) 
 
Springs in Series 
 
When an assemblage of springs is subjected to a force and all 
springs in general deflect by different amounts, the springs are 
said to be in series. Figure 4 shows n springs in series,  
where they are connected together in a chainlike fashion or in 
series. 
 

 
 

Figure 4: n springs in series. 
 
The equivalent stiffness for n springs in series is: 
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General Spring System 
 
All linear elastic structures can be modelled as a system of 
springs that are, in general, in parallel and/or in series with 
each other. For example, in Figure 5, springs k2 and k3 are in 
parallel with each other, and their equivalent stiffness is k2 + k3; 
this equivalent stiffness is in series with spring k1 and the 
equivalent stiffness of the entire three-spring system is: 
 

321

321 )(
kkk

kkk
keq ++

+⋅
=    (7) 

 

 
 

Figure 5: Parallel-series spring system. 
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The deflection at the location of the applied load relative to the 
left-end of the structure (a fixed support) can be computed by 
substituting the system’s equivalent stiffness into Hooke’s Law 
and rearranging to solve for Δ; that is: 
 

)(
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321

kkk
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k
F

eq +⋅
++

==Δ   (8) 

 
STRUCTURAL MEMBERS AND STRUCTURAL 
SYSTEMS MODELLED WITH SPRINGS 
 
Additional representative spring equations are needed to model 
common building structural members. These spring equations 
can be derived using structural analysis principles; however, 
the vast majority of students in structural analysis are probably 
unaware that they have this capability. 
 
Engineering Judgement 
 
It must be emphasised early on that good engineering 
judgement is required to model effectively a structure while 
keeping the hand computations tractable. In order to simplify 
the analysis, some structural members can be assumed to be 
perfectly rigid (a spring with an infinite stiffness) with little 
loss of accuracy, while the relative flexibility of other members 
must be considered and, therefore, modelled as springs. Given 
the applied loads and the properties of the structural elements 
(ie material properties, section properties, structural 
dimensions, etc), the analyst is required to carefully examine 
the structural drawings (or sketches) and make assumptions 
about structural connections, know how to model individual 
structural components as springs, and assemble the springs in 
parallel and/or series to produce a representative equivalent 
stiffness so the desired structural deflections and internal 
member forces can be computed. 
 
Rigid Members 
 
When a structural member is very stiff relative to more flexible 
structural members in its vicinity, it can often be considered to 
be perfectly rigid with little resulting error. For example, floor 
and roof structural systems (ie stiff floor/roof diaphragms) are 
commonly considered to be rigid relative to the columns that 
connect one diaphragm to another. 
 
Flexible Members 
 
Basic structural analysis principles allow an analyst to model a 
column as a spring. A column that is rigidly connected to a 
rigid diaphragm – the ends of the column do not rotate relative 
to the diaphragm – at its base and top, has an equivalent lateral 
stiffness (see Figure 6a) given by: 
 

3
12

L
EIkeq =    (9) 

 
where I = a section property of the column known as the 
moment of inertia and L = the length of the column. This 
equation represents the stiffness due to bending in the column 
and is used when the top of the column displaces laterally 
relative to its base. 
 
However, if either the top or bottom of the column is perfectly 
free to rotate relative to the diaphragm – a pinned-connection – 

and the other connection is rigid, the stiffness afforded  
by the column is reduced by a factor of four (see Figure 6b); 
that is: 
 

3
3
L
EIkeq =    (10) 

 

 
 

(a) Rigid-rigid (b) Pinned-rigid 
 

Figure 6: Column to diaphragm connections. 
 
In actuality, connections are never perfectly rigid or pinned, 
but structural deflections can be reasonably approximated 
using these connection approximations. Finally, if both the top 
and the bottom of a column is pinned (free to rotate relative to 
the diaphragm to which it is connected), the stiffness provided 
by the column in the lateral direction is zero; that is, the 
boundary conditions of the column in this case render the 
column ineffective in resisting lateral loads. 
 
Example: Planar Frame Building Structure 
 
Consider the three-storey, planar-frame, building structure in 
Figure 7a. It is of interest to compute the drift of the building Δ 
(deflection at roof level) given that the applied loading, the 
structural geometry, and member material and section 
properties are known. Due to the assumed rigid floor and roof 
diaphragms, the springs representing each of the columns at a 
storey level are in parallel since they are all forced to deflect 
the same amount. 
 

 
 

 
(b) Equivalent spring 

 
Figure 7: Hypothetical 2D building example (7a-7b). 

 
All five columns of the first storey have flexural rigidity 2ĒĪ 
and equal lengths as shown in Figure 7a; individual stiffnesses 
are different, however, due to the different end (boundary) 
conditions. Since all five springs are in parallel, the first-storey 
stiffness is: 
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Similarly, the second-storey springs are all in parallel and the 
storey stiffness is: 
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The left-most column of the second-storey has zero stiffness 
since both ends of the column are pinned. 
 
The third-storey stiffness is: 
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Since each storey is in series relative to its neighbouring storey, 
the equivalent stiffness of the entire structure, shown 
schematically in Figure 7b, is given by: 
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Thus, rearranging Hooke’s Law, the drift is given by the 
following equation: 
 

IE
F

k
F

eq 730,26
4392 3l

==Δ    (15) 

 
Internal forces in any column at each storey can be computed 
by proportion of the individual column stiffness relative to the 
overall stiffness at the storey. For example, for the load case 
shown in Figure 7, the force at any storey level is F. If the 
lateral force in the leftmost column of the first storey is to be  
 

computed, it is equal to F times the percentage of the stiffness 
this column possesses relative to the total storey stiffness; the 
force in this column is: 
 

F
k
kF L

L
1

1
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where kL1 is the stiffness of the leftmost column of the first 
storey and k1 is the total first storey stiffness, and: 
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and: 
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so: 
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or approximately one third of the storey force F. 
 
CONCLUSIONS 
 
Modelling linear elastic structures as a system of springs 
enhances the understanding of structural behaviour. The 
procedure also provides a quick and effective means to check 
traditional structural analysis calculations, assists in the design 
of structural members and/or structural systems, and can be 
used to verify finite element results.  
 
This modelling procedure, or some variation of it, is effectively 
presented in some structural dynamics texts for computing a 
structure’s equivalent stiffness but, unfortunately, it is rarely 
used in elementary statics-based structural analysis or design 
courses. The authors feel that this procedure, if taught early in 
a civil engineer’s undergraduate education, will facilitate the 
understanding of structural behaviour in a wider variety of 
structures courses. 
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