
World Transactions on Engineering and Technology Education © 2007 UICEE
Vol.6, No.1, 2007

 135

INTRODUCTION

Computer engineering curricula have shifted their focus from
computer architecture and CPU design to systems built around
highly integrated microcontrollers and embedded systems. To
reflect these changes, Christchurch Polytechnic Institute of
Technology (CPIT) in Christchurch, New Zealand, uses
in-house developed microcontroller training kits to teach
embedded systems and microcontrollers to students.

For more than a decade, the 68HC11 training kits have been
used for classes and students’ design projects at the CPIT. The
training kits, designed and developed in-house, use a modular
approach, allowing students to plug in various modules, each
of which contains hardware to teach the use of various
hardware devices and software techniques that are used by
designers in industry. Based on these training kits, a tiny real-
time operating system was developed and applied to a sport
training machine [1][2].

The training kits have been very successful and have provided
many years of relatively trouble-free operation in a student
environment. Today, these kits are becoming outdated. The
68HC11 microcontroller, developed by Motorola in 1984 and
now the legacy to Freescale Semiconductor, is no longer used
for new designs being considered as an obsolete
microcontroller [3]. The training kits themselves are beginning
to age and require more frequent maintenance.

A new 8-bit microcontroller training kit was recently designed
and developed at the CPIT. Central to the training kit is the
ATmega128 microcontroller, which has intensive on-chip
peripherals, a large amount of flash memory (128 Kbytes) and
static RAM (4 Kbytes), and free development environment
support. The training kit was designed with a modular
approach. It has a built-in Joint Test Action Group (JTAG)
debugger, a Universal Serial Bus (USB) interface, simple

onboard human interfaces and expansion ports so that it can be
used not only for teaching in class, but also for students’ design
projects.

Various modules are used with the training kit for teaching
computer engineering in the BEngTech programme at the
CPIT. The BEngTech is a three-year degree (technologist
level) qualification. It is aligned to the international Sydney
Accord [4]. There are three computer engineering courses in
the programme: Computer Engineering I, IIA and IIB [5].
Computer Engineering I is the compulsory course in the
second year. Computer Engineering IIA and IIB are two
courses for students who select computer engineering as their
specialisation in the third year.

In this article, the author firstly introduces the new micro-
controller training kit, which was developed as a platform of
teaching microcontrollers and embedded systems. Secondly,
teaching modules based on this training kit to teach computer
engineering courses of the BEngTech are discussed. The article
concludes with conclusions and future work.

THE AVR 8 MICROCONTROLLER TRAINING KIT

The microcontroller training kit consists of four functional
blocks: the AVR microcontroller, the debugger, the USB
interface and the I/O module. To make the kit more flexible for
students’ learning and for their projects, the first three blocks
were built into a single module as the daughterboard and the
I/O module as the motherboard. The daughterboard is also
referred to as the AVR-CPU Module. A block diagram of the
training kit is shown in Figure 1.

The AVR Microcontroller

The ATMega128 microcontroller and its support components
are the basis of this training kit [6].

Teaching embedded systems using a modular-approach microcontroller training kit

Yao Li

Christchurch Polytechnic Institute of Technology
Christchurch, New Zealand

ABSTRACT: In this article, the author presents a new microcontroller training kit for teaching computer engineering in the Bachelor
of Engineering Technology (Electrotechnology) programme (BEngTech) at Christchurch Polytechnic Institute of Technology
(CPIT) in Christchurch, New Zealand. The microcontroller training kit was designed and developed in-house with a modular
approach. Central to the training kit is the ATmega128 microcontroller, which is an industry relevant microcontroller and has
intensive on-chip peripherals, a large amount of flash memory and static RAM, as well as free development software support. The
training kit has a built-in JTAG debugger, a USB interface, simple human interfaces and expansion ports so that it can be used
not only for teaching in class but also for students’ design projects. Modules used to teach computer engineering courses of
the BEngTech using the onboard features are discussed. The modules to be used for teaching embedded operating systems are
also outlined.

 136

Figure 1: A block diagram of the training kit.

The AVR 8 is a relatively new 8-bit microcontroller compared
to other commonly used microcontrollers such as the Intel
8051 and the Microchip PIC [7][8].

The AVR has a Harvard architecture and uses separate
memories and buses for programs and data. The program
memory space is the on-chip In-System Programmable (ISP)
flash. This allows the program memory to be reprogrammed
in-system through an SPI serial interface by a conventional
non-volatile memory programmer or by an on-chip boot
program running in the AVR core.

The AVR CPU has a simple programmer’s model. It has thirty-
two 8-bit general registers. Six of them can be combined as
three 16-bit indirect address register pointers for data/program
space addressing. The status register and the stack pointer are
located as I/O registers.

The whole AVR family has the same instruction set and
the same CPU core with differences in peripheral/RAM/
ROM capabilities: from the Tiny AVR controller ATtiny11
with 1KB flash ROM, no RAM (only the 32 registers) and
8 pins, up to the Mega AVR controller ATmega2560
with 256KB flash ROM, 8KB RAM, 4KB EEPROM, 16
ADC channels of 10 bits each, timers, analogue comparators,
JTAG, etc.

There is an open source AVR C compiler suite available based
upon the GNU C compiler for Windows called WinAVR [9].
WinAVR is supported by Atmel’s freeware professional
development software, AVR Studio 4 [6].

Features such as free development tools and compilers, plus the
ability to integrate a low cost in-circuit debugger into the AVR-
CPU Module made the AVR an excellent choice for the new
training kits. Atmel has shipped over 500 million AVR
microcontrollers, making it the world’s largest selling 8-bit
flash microcontroller [10]. This allows students to develop a
popular microcontroller architecture that is widely used in the
electronics industry.

When the AVR-CPU Module was designed, the ATMega128
was the most feature-packed AVR device available. The
ATMega128 has large built-in ROM (128K bytes) and RAM
(4K bytes) capability and also provides a wide range of internal
peripherals and seven 8-bit I/O ports (Ports A to G). All of
these features have made the ATMega128 an ideal choice for
the training kit.

The Debugger

The AVR microcontroller provides an IEEE Standard 1149.1
compliant JTAG test interface for accessing the on-chip debug
system and programming. With the JTAG debugger, users can
not only program their code into the target AVR but also
control and monitor the execution of their code directly.

The debugger is designed to be used with AVR Studio, an
integrated development environment, allowing the developer to
create, debug and program AVR applications within one
application. AVR Studio has a software simulator and a plug-in
architecture to allow the support of external devices like
programmers, compilers and development boards. AVR
Studio’s ease of use and powerful features make it a very
popular tool with AVR developers. Integrating the debugger
into the AVR-CPU Module gives many advantages to the user.
It removes the need for an external debugger device and cables,
providing an all-in-one solution.

The USB Interface

The USB interface provides the means for the debugger to
communicate with the host computer. This is achieved by
a serial Universal Synchronous/Asynchronous Receiver and
Transmitter (USART) interface on the side of the debugger
and USB interface on the side of the computer. The
FT2232C developed by FTDI was used to implement the
interface [11].

The FT2232C has two RS232 ports. One of them is connected
to the debugger and another connected to USART0 of the
ATMega128 so that the microcontroller can communicate to
the computer via the USB port.

Drivers of the USB interface are available for both Windows
2000 and XP from FTDI. These drivers create a virtual COM
port in the computer. The controlling application running in the
computer communicates with a RS232 device and is not aware
that it is actually communicating with the device through a
USB connection.

Another feature offered by the FT2232C is the controllable
power supply source. It provides the power supply to the entire
training kit with 5V of voltage and up to 500mA of current.

The I/O Module

The I/O module was built in a separate printed circuit board. It
is the motherboard of the training kit so that the AVR-CPU
module can be plugged onto it, as shown in Figure 2.

Figure 2: The AVR-CPU and I/O modules.

 137

There are eight toggled switches connected to Port C and 16
LEDs connected to Ports A and C of the ATMega128
microcontroller. These switches and LEDs are simple human
interfaces. A variable resistor is connected to one of the ADC
channels. All of these onboard I/O peripherals are intended to
be used for introductory courses.

The I/O module also provides six I/O port connectors
connected to Port A to Port F, respectively. All these port
connectors have a standard interface to the existing peripheral
modules in the School at the CPIT, such as keypads, seven-
segment multiple-digit displays, LCD displays, etc. These can
be utilised for advanced courses, especially for course projects
or students’ design projects.

A serial port connector was designed in the I/O module to
make use of the second serial port in the ATMega128.

The microcontroller training kit was designed to be used
in a student environment and is housed in a small zip-up carry
case. The case provides adequate physical protection by the use
of a protective soft cover with a reinforced backing. The
complete kit connected to the laptop computer is shown in
Figure 3.

Figure 3: The training kit is connected to a laptop computer.

TEACHING MODULES

Based on the modular design and all-in-one solution of the
training kit, various teaching modules were developed to teach
computer engineering in the BEngTech and other programmes.
Among the three computer engineering courses in the
BEngTech, Computer Engineering I (BCEN240) is an
introductory course taught in the second year. Upon
completion of this course, students will be able to:

• Identify and describe common modern computer systems,

architectures, instruction sets and common peripheral
components;

• Apply programming techniques in assembly and high-
level languages to write control programs for a selected
microprocessor/controller.

The prerequisite of this course is Electronic Principles
(BETR120), where students have learnt Boolean logic, logic
signal concepts and basic digital devices.

BCEN240 is taught over 13 teaching weeks with three-hour
lectures and a one-hour tutorial each week, plus six four-hour
laboratories.

After the architectures of a computer system and the CPU itself
are introduced in the lectures, students are expected to explore
the microcontroller using introductory modules.

The introductory modules utilise the onboard simple human
interfaces: LEDs and toggle switches. Students are expected to
set up the training kit by connecting the USB cable to the host
computer, installing the drivers if not yet installed and starting
up AVR Studio 4 in the host computer. Students write an
assembly language program to carry out binary counting in
Port A LEDs. This session is a guided self-exploration for the
students so there are lots of interactions between the lecturer
and students. Indeed, students usually can get their first
program built and run without too much trouble after the
assembly program template is introduced. When running their
program, they realise that the counting in the output’s LEDs is
too fast to be observed. At this stage, common debugging tools,
such as Single Step and Break Points, are introduced.

After a short discussion among students, they soon figure out
the following:

• To implement loops for delay between counts so that the

binary counting in the output port can be easily observed;
• To implement subroutines for delay loops so that the

source code can be re-used.

When the modified program is built and run again, it crashes.
This creates curiosity among the students involved. To find out
what has happened, students are guided to use debugging tools.
After students have determined that the program crashed when
a subroutine tried to return to the calling routine, the use of the
stack and the stack pointer for subroutine calling and returning
is introduced.

After the introductory module and with more materials studied
in the lectures, students are expected to write more assembly
language programs, such as Knight Rider, Bar Indicator, etc,
using the onboard input/output interfaces. Students are then
required to complete a project implementing an electronic
game called Copy the Lights. The game displays a random
binary number in Port A, waiting for the user to set the toggle
switches in Port C. If the input number matches the number in
Port A within five seconds, the game outputs another random
number; otherwise, the game is over. It is found that writing
electronic games stimulates students’ interests. Many students
add new features to the game.

Starting with assembly language programming enhances the
understanding of how the microcontroller works. The focus of
assembly language programming is on data transferring so that
students can better understand the addressing modes of the
CPU. Figure 4 is a diagram summarising all the addressing
modes for data transferring, which is discussed in lectures and
found to be very useful for assembly language programming.

To progress in pace with teaching in lectures, the next modules
are those implemented in the C programming language. The
built-in USB interface has two RS232 ports, one of which is
connected to USART0 of ATMega128 so that the micro-
controller can communicate with the host computer via the USB
port. To teach the C language, the standard I/O can be re-directed
to USART0. The HyperTerminal in the host computer connected
to the virtual COM port can then be used as input/output devices
for printf(), scanf() and gets() functions. The header file that
redirects the standard I/O to USART0 is provided to students.

 138

Figure 4: AVR CPU addressing modes for data transferring.

Connected to the host computer through the USB connection,
the training kit is a generic and standalone platform (with no
extra connections) for teaching the C language. The
development software, AVR GCC compiler and AVR Studio 4,
is freeware, not only available for classrooms, but also for
students’ home computers. AVR Studio 4 provides both
assembly level and C-source level debugging.

After lectures and laboratory exercises on C data type, input
and output, decision-making, looping and functions, students
are required to complete a project in the C language; this is
another electronic game called the Number of Nim. The game
is played by taking turns to remove 1, 2 or 3 counters from a
board. The object of the game is to force the opponent to
remove the last counter from the board. A random number
selection determines if the computer or the player has the first
turn. This is a general C program and can be implemented
using any C compiler.

In parallel to the project, students continue to use the onboard
modules to study the functionality of common on-chip
peripherals, such as the timers, USART and ADC. In the ADC
module, students rewrite the Bar Indicator using the C language
in which the output of the Bar Indicator is controlled by the
onboard adjustable resistor connected to the ADC channel.

Other on-chip peripherals are not studied in BCEN240.
External modules, such as keypad, LCD, MMC adaptor (using
SPI) and real-time clock (using I2C), are available and will
taught in the third year computer engineering courses of the
BEngTech.

CONCLUSIONS AND FUTURE WORK

The AVR microcontroller training kit has been designed
specifically as a platform for teaching microcontrollers and
embedded systems. It has an integrated JTAG debugger and a
USB interface, and is supported by freeware professional
development environment. The all-in-one solution of the
training kit provides onboard modules for teaching computer
engineering courses in the BEngTech.

With its modular design, along with the microcontroller’s
large amount of flash memory and static RAM, the training
kit is also a platform for teaching embedded operating
systems.

Future work will be to design and develop an embedded
MINIX operating system using this kit. MINIX has been
designed for educational purpose [12]. Its latest version is also
targeted at reliability and security, as well as full functionality
for the $100 laptop project [13][14]. MINIX is a UNIX clone,
but was designed to be small enough and clean enough for
students to understand. The embedded MINIX will maintain
this basic design principle and deal with the resource constraint
that is common to embedded microcontrollers.

REFERENCES

1. Li, Y. and Wilson, P., PARTOS-11: an efficient real-time

operating system for low-cost microcontrollers. Proc. 1st
IEEE Inter. Workshop on Electronic Design, Test, and
Applications, Christchurch, New Zealand, 235-239
(2002).

2. Li, Y., The slack sharing server for embedded
microcontrollers. Proc. 2nd IEEE Inter. Workshop on
Electronic Design, Test and Applications, Perth, Australia,
121-125 (2004).

3. Freescale Semiconductor (2005), http://www.freescale.com
4. Engineers New Zealand, IPENZ, Three Year Engineering

Technology Degrees (2006),
http://www.ipenz.org.nz/ipenz/Education_Career/accredita
tion/three_year.cfm

5. Maples, D. and Wilson, P., The Bachelor of Engineering
Technology at CPIT. Proc. Assoc. for Engng. Educ. in
Southeast and East Asia and the Pacific Mid-Term Conf.
2004, Auckland, New Zealand, 48-54 (2004).

6. Atmel (2005), http://www.atmel.com/
7. Intel, MCS® 51/251 Microcontrollers (2005),

http://www.intel.com/design/mcs51/
8. Microchip, 8-bit PIC® Microcontrollers (2005),

http://www.microchip.com/stellent/idcplg?IdcService=SS_
GET_PAGE&nodeId=74

9. SourceForge, WinAVR (2005), http://winavr.
sourceforge.net/

10. Atmel, Atmel’s AVR Microcontroller Ships
500 Million Units (2006), http://www.atmel.com/dyn/
corporate/view_detail.asp?ref=&FileName=Ships500M.ht
ml&SEC_NAME=Product

11. FTDI Chip, FT2232C Dual USB UART/FIFO IC (2006),
http://www.ftdichip.com/Documents/DataSheets/ds2232c_
15.pdf

12. Tanenbaum, A.S. and Woodhull, A.S., Operating Systems
Design and Implementation (3rd edn). Upper Saddle River:
Pearson Education (2006).

13. Tanenbaum, A.S., Herder, J.N. and Bos, H., Can we make
operating systems reliable and secure? Computer, May,
44-51 (2006).

14. MINIX3 (2006), http://www.minix3.org/

