# Pedagogical evaluation of simulation tools usage in Network Technology Education

### Woratat Makasiranondh, S. Paul Maj & David Veal

Edith Cowan University Perth, Australia

ABSTRACT: Within the field of network technology, practical hands-on skills are highly regarded by potential employers. However, dedicated network teaching laboratories are expensive. In addition to the purchase cost, there is ongoing technical support and maintenance. An alternative approach is to provide students with a network simulator. While simulators cannot provide students with important practical skills, such as cabling and physical connectivity, they represent a useful, cost-effective adjunct to teaching programmes. This study is a preliminary analysis of two of the main network simulators currently in use.

#### INTRODUCTION

The ACM/IEEE computer engineering core body of knowledge includes computer networks [1]. However, many universities offer specialised, in-depth courses with instruction in excess of the ACM/IEEE guidelines. Within Australia 72% of universities are Cisco Network Academies [2] and hence offer the Cisco Network Academy Program (CNAP) curriculum. CNAP is the largest on-line curriculum in network technology [3]. Cisco Network Academies have access not only to the on-line curriculum and assessments but also to low cost equipment. Dedicated network teaching laboratories are important because they provide students with the opportunity to obtain practical, hands-on skills, which are considered important by prospective employers [4]. However, the capital costs associated with dedicated teaching laboratories are significant. Further, such laboratories require on-going technical support and maintenance. Assuming workshops consist of 20 students, each student pair should be provided with at least one router and one managed switch representing a total cost of about \$A50,000. It is possible to reduce the number of devices but this would significantly reduce student access to equipment. Ideally, such equipment should be protected by uninterruptible power supply units, be rack mounted and located in a dedicated room.

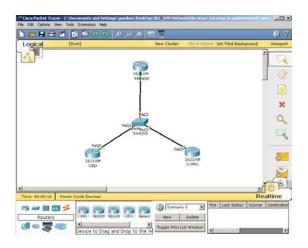
Such laboratories require on-going technical support and maintenance. The authors recommend, based on their experience, that these laboratories require at least 20 hours a week of dedicated technical support. This technical support is needed because students must be given direct access to network device operating systems. Hence, network devices need to be regularly updated and also re-imaged. Network devices are designed and constructed for conditions where networks are configured and left largely untouched for considerable periods of time. In a dedicated network teaching laboratory, depending on the number of students, cable connections to devices will occur numerous times per day. Over a period of years this results in an accelerated wear and tear of the physical devices. Hence, the useful life span is likely to be considerably reduced, and so a regular device replacement policy must also be costed.

An alternative approach is to provide students with a network simulator. While simulators cannot provide students with important practical skills, such as cabling and physical connectivity, they represent a useful, cost-effective adjunct to teaching programmes. Simulators are also of considerable importance for practising professionals seeking to obtain and upgrade their professional qualifications.

#### SIMULATORS

Simulation tools are useful for modelling and evaluating network protocols and traffic. Such tools are important because it is impractical to conduct experiments on a *live* network. However, many simulators are primarily research tools and their use in a teaching context may be problematic [5]. One of the main problems is these tools are complex and may be difficult to use. Students, especially novices, ideally need easy to use tools that help them develop cognitive models.

Diagrammatic model representations are considered to be particularly valuable. According to the principles of Constructivism, students must construct knowledge rather than simply being recipients of information [6]. Glaserfield states:


... knowledge cannot simply be transferred by means of words. Verbally explaining a problem does not lead to understanding, unless the concepts the listener has associated with the linguistic components of the explanation are compatible with those the explainer has in mind. Hence it is essential that the teacher has an adequate model of the conceptual network within which the student assimilates what he or she is being told. Without such a model as a basis, teaching is likely to be a hit-or-miss affair [7].

Although the usage of the highly abstraction-levelled simulation tools for learning purposes is possible, such usage requires a further creation and modification of front-end interfaces [5][8]. Without a suitable Graphical User Interface, novices are likely to experience difficulties with these research-based simulation tools.

However, these problems largely have been addressed and so network simulators represent a low-cost method of teaching network technology. A typical network simulator allows students to design and configure a network without the need for dedicated network devices. There exists a wide range of simulators that offer different degrees of functionality and flexibility. An important criterion is that the simulator must mimic, as closely as possible, actual network device operation. Two simulators commonly used in teaching were analysed as follows.

#### PACKET TRACER

The Cisco Network Academy recently introduced Packet Tracer - a network simulation software tool for teaching. It allows students to create network topologies and then configure the associated devices. Further, it is possible to inject packets into these networks and observe the results. This software can be deployed on a standard PC and then used by students studying from home. It is possible to configure Packet Tracer as a multi-user system. The Packet Tracer software allows students to design a network based not only on different types of devices such as routers and switches but also on specific models of devices (Figure 1). However, networks must be considered in the context of rooms and building. Packet Tracer allows users to design a network in the context of a given physical environment and, hence, develop the associated cable runs (Figure 2).



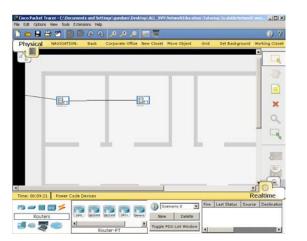



Figure 1: Packet Tracer network device topology map.

Figure 2: Packet Tracer building topology map.

Significantly, even though Packet Tracer is a graphically based, interactive tool, it also provides students with a textbased Command Line Interface (CLI) (Figure 3). Though advanced Graphical User Interface based configuration tools, such as Security Device Manager, are available for configuring network devices the CLI is still commonly used in industry.

|                 | 🖸 🖻 🖓 🖉 🖉 🖉 🖉 🖉                                                                 | J ?               |
|-----------------|---------------------------------------------------------------------------------|-------------------|
| ogical          | Press Planter Street Part T                                                     |                   |
|                 | Physical Config CLI                                                             |                   |
|                 | IOS Command Line Interface                                                      |                   |
|                 | FLIRING CONTROL LINE STOCKED ON INCOMPLETE PROPERTIES OF                        | , changed state t |
|                 | PERTE-                                                                          |                   |
|                 | PERTE-                                                                          |                   |
|                 | PERTE-<br>PERTE-config %                                                        |                   |
|                 | * Invalid input detected at """ marker.                                         |                   |
|                 | PSETE-enable                                                                    |                   |
|                 | PERTHRScofig<br>00:00:45: 400PF-5-ADJCHC: Process 50. Mbg 172.16.7.1 on FartEth |                   |
|                 | DING to FULL, Londing Done                                                      | ernetu/d from box |
| FeO/C           | 00:00:45: 40277-5-ADJCRC: Process 60, Mbr 192.168.15.1 on Past3                 |                   |
| <b>P</b>        | OADING to FULL, Loading                                                         | Cherneto/o tree s |
| 2621×M          | FRETRECONFIG 5<br>Enter configuration commands, one per line. End with CNTL/2.  |                   |
| CBD             | FEFTE(config) #                                                                 |                   |
|                 | FEITE (config) #                                                                |                   |
| a: 00:02:16 Pow | FERTH(config)#                                                                  |                   |
| #1.00102126 Pow |                                                                                 | Copy Paste        |
|                 |                                                                                 |                   |

Figure 3: Packet Tracer Command Line Interface (CLI).

Packet Tracer is now an integral part of the Cisco Network Academy on-line curricula - Cisco Certified Network Associate (CCNA), CCNA Security and also aspects of the IT Essentials and Cisco Certified Network Professional (CCNP) courses. However, despite this, Cisco recommends Packet Tracer as an adjunct and not a substitution for standard laboratories based on real devices. According to Cisco Systems:

# Packet Tracer supplements physical equipment in the classroom by allowing students to create a network with an almost unlimited number of devices, encouraging practice, discovery, and troubleshooting [9].

Experience to date with Packet Tracer suggests novices, in the first instance, should be exposed to configuring real equipment. This is because preliminary learning is initially based on concrete objects from which learners develop abstract conceptual models. In effect early learning is based on an experiential domain with recognisable objects. Ideally, students should be provided also with an associated, but simplified, conceptual model [10-12]. After the exposure to real devices, students typically are more confident in the use of Packet Tracer. However, further evaluations are needed.

#### GNS3 GRAPHICAL NETWORK SIMULATOR

An alternative to Packet Tracer is the GNS3 graphical network simulator [13]. GNS3 is extensively supported with a range of associated video tutorials, ranging from suitable for beginners to advanced practising professionals. Simulators, such as GNS3, are particularly important for professionals seeking to obtain and upgrade professional certification. Such certifications not only benchmark competency for specific technologies, such as Voice Over IP (VOIP) and Firewalls but also have international currency. GNS3 allows users to design a network topology based on specific models of different network devices (Figure 4) along with an associated CLI window. One of the main limitations of GNS3 is obtaining a network devices operating system to be used with the simulator. Without the proper devices, operating system GNS3 cannot perform any significant tasks. Normally, operating software is bundled with the network equipment and not purchased individually. Another limitation is its high consumption of processing resources. However, as it is open source software, further functionality and modification may become available.

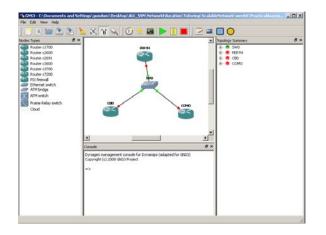



Figure 4: GNS3 design screen which shows topology map.

#### **EVALUATION**

Both Packet Tracer and GNS3 are freely available and have comparable user interfaces. Packet Tracer and GNS3 were evaluated according to a range of criteria (Table 1). Each simulator has strengths and weaknesses - arguably there are no outstanding limitations or benefits to either tool. However, one criterion considered important by the authors is the ability to integrate the simulator with other software tools, such as Security Device Manager (SDM) and Wireshark. SDM is a graphical user interface used for configuring network devices and is progressively being deployed as an alternative to the CLI. Wireshark is a software tool that can capture and analyse data communications traffic such as Ethernet Frames and IP Packets. Both of these tools are commonly used in real networks for configuration and also fault diagnosis.

#### CONCLUSIONS

Practical hands-on skills are of paramount importance to network technology students. Such skills are highly regarded by prospective employers. However, to establish a 20-user network teaching laboratory with ten routers and switches costs approximately \$A50,000. In addition to this, dedicated technical support is needed for at least 20 hours a week. Further, regular use by students exacerbates equipment deterioration and equipment replacement also must be funded. Network simulators offer functionality that closely mimics a real network. Both Packet Tracer and GNS3 provide extensive functionality and hence are valuable, cost-effective teaching tools. Each tool has advantages and disadvantages. The authors recommend the deployment of Packet Tracer primarily because it is an integral part of the Cisco Network Academy Program. Experience with Packet Tracer to date suggests initial learning should be based on actual equipment. Thereafter, use of a simulator is beneficial to student learning.

#### REFERENCES

- 1. Association for Computing Machinery and IEEE Computer Society, Computer Science Curriculum 2008: An Interim Revision of CS 2001 (2008).
- 2. Cisco, Cisco Academy Netspace (2009), 27 November 2009, http://www.cisco.com/web/learning/netacad/Unica /NetSpaceRedirect.html
- 3. Maj, S.P., Tran, B. and Veal, D., State model diagrams a systems tool for teaching network technologies and network management. *Inter. Joint Conf. on Computer, Information and Systems Sciences, and Engng.*, Springer, University of Bridgeport (2007).
- 4. Deloitte Touche Tohmatsu, The Demand for Education and Training (1995).
- 5. Qun, Z.A. and Wang, J., Application of NS2 in education of computer networks. *Inter. Conf. on Advanced Computer Theory and Engng.*, 2008. ICACTE '08., 368-372 (2008).
- 6. Ben-Ari, M., Constructivism in computer science education. SIGCSE Bull., 30, 1, 257-261 (1998).
- 7. Glasersfeld, E., Cognition, construction of knowledge, and teaching. Synthese, 80, 1, 121-140 (1989).
- 8. Al-Holou, N., Booth, K.K. and Yaprak, E., Using computer network simulation tools as supplements to computer network curriculum. *Frontiers in Educ. Conf.*, 2000. *FIE 2000. 30th Annual*, S2C/13-S2C/16, **2** (2000).
- 9. Cisco, Packet Tracer, http://www.cisco.com/web/learning/netacad/course\_catalog/PacketTracer.html
- 10. Moran, T.P., The Command Language Grammar: a representation for the user interface of interactive computer systems. *Inter. J. of Man-Machine Studies*, 15, 1, 3-50 (1981).
- 11. Bayman, P. and Mayer, R.E., Instructional manipulation of users' mental models for electronic calculators. *Inter. J.* of *Man-Machine Studies*, 20, **2**, 189-199 (1984).
- 12. Carroll, J.M. and Mack, R.L., Metaphor, computing systems, and active learning. *Inter. J. of Man-Machine Studies*, 22, 1, 39-57 (1985).
- 13. GNS3, GNS3: graphical network simulator, 31 July 2009, http://www.gns3.net/

## Table 1: Evaluation result of simulation tools.

| Comparison Criteria                                                   | Packet Tracer                                                                                                                             | GNS3                                                                                                                                                                                                 |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proprietary to equipment vendor                                       | Proprietary to Cisco                                                                                                                      | Support Cisco IOS<br>and JuniperOS                                                                                                                                                                   |
| Legal issue                                                           | Simulated Cisco devices, no legal issue                                                                                                   | Legal issue with obtaining IOS                                                                                                                                                                       |
| Availability                                                          | Free for CNAP student only<br>Not accessible for other students                                                                           | Software is Open source; however, IOS are not provided and it is essential to run the software                                                                                                       |
| Simulation level                                                      | Simulation                                                                                                                                | Emulate the behaviour of devices through IOS                                                                                                                                                         |
| Support of configuration command                                      | only limited number of supported command                                                                                                  | Fully support every commands, depending on version of IOS                                                                                                                                            |
| Create a pre-define learning situation                                | Yes                                                                                                                                       | No                                                                                                                                                                                                   |
| Assess and compare the input configuration to the pre-define solution | Yes                                                                                                                                       | No                                                                                                                                                                                                   |
| Connection to real equipment                                          | No                                                                                                                                        | Yes                                                                                                                                                                                                  |
| Virtual connection between different instance of simulation software  | Yes, with special protocol between program instance in a different machine                                                                | Yes through multiple virtual interface of the Operating System (OS)                                                                                                                                  |
| Physical connection between different instance of simulation software | No                                                                                                                                        | Yes, through real network traffic                                                                                                                                                                    |
| Physical detail of simulated devices                                  | Provide a photographic front-panel of devices in configuration.<br>User can modify the devices by inserting/removing an expansion module. | Doesn't provide physical detail of devices. Different devices are distinct<br>by different version of device operating system. Doesn't concern on the<br>different in physical level of the devices. |
| Location and distance information                                     | Provide location and distance related information; depict by diagram represent places and distance.                                       | Working in a logical interpretation only, doesn't provide any physical perspective. Only provide logical topology                                                                                    |
| Virtual level interpretation of the simulator: Cabling                | Stimulate users perception of different physical connectivity by providing different cabling symbol for different connection types        | Doesn't provide distinct symbols of different connection types                                                                                                                                       |
| Type of equipment support                                             | Router<br>Switch<br>Other end-devices: PC, IPPhone, TabletPC, Printer, Server                                                             | Router and Switch                                                                                                                                                                                    |
| Level of abstraction                                                  | Higher level of abstraction with less implementation details                                                                              | Lower level of abstraction, Simulation give a higher detail by incorporate<br>a real packet which can even be used to connect with real devices outside<br>the simulation software                   |

Table 1: (Continue).

| Comparison Criteria                                                   | Packet Tracer                                                                                                                            | GNS3                                                                                                                                                                                                          |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Computation resource consumption                                      | Consume less computer processing resource                                                                                                | Consume high computer processing resources, due to providing a lower implementation detail of simulation                                                                                                      |
| Pedagogy features                                                     | Provide animation of traffic and details of send/receive packet within the designed models                                               | Doesn't provide traffic information. User have to capture the traffic by other third party tools                                                                                                              |
| Displaying protocol datagram in simulation (network traffic analyser) | Provide high detail of protocol datagram of the simulated traffic                                                                        | Doesn't provide the ability to view the datagram to analyse the<br>behaviour of the protocol. However, this ability can be gained from a<br>connection to other protocol datagram analyser such as WireShark. |
| Interface of the text-based<br>configuration screen                   | Only to the provided configuration method                                                                                                | Can change the configuration environment to any other real terminal software, Windows Telnet, Putty, HyperTerminal, etc.                                                                                      |
| Graphical interface configuration screen                              | Basic graphical user interface of configuration is built-in software                                                                     | Can be able to connect to other graphical configuration interface such as Cisco Secured Device Manager (SDM)                                                                                                  |
| Interface with other third party software                             | There is no interface with other third party software                                                                                    | Can be done through virtual interface                                                                                                                                                                         |
| Scalable of simulation (Number of devices support)                    | Support unlimited number of devices, due to running in highly<br>abstract level. Doesn't rely on the performance of the host<br>machine. | Support only limited number of devices, which depending on the performance of the host machine.                                                                                                               |
| Quality of configuration response                                     | Suppressed configuration response, to only supported command.                                                                            | Provide more detail of realistic configuration responds.                                                                                                                                                      |
| Supported operating system                                            | Windows XP<br>Linux                                                                                                                      | Windows<br>MacOS X                                                                                                                                                                                            |
| Complexity of the tools                                               | Simple interface, drag and drop                                                                                                          | Intermediate; user need better knowledge on running simulation tools                                                                                                                                          |